
www.manaraa.com

Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2016

Testing Non-termination in Multi-threaded
programs
Priyanka Thyagarajan
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Computer Engineering Commons, Computer Sciences Commons, and the Literature
in English, North America Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Thyagarajan, Priyanka, "Testing Non-termination in Multi-threaded programs" (2016). Graduate Theses and Dissertations. 15824.
https://lib.dr.iastate.edu/etd/15824

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F15824&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F15824&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F15824&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F15824&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F15824&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F15824&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=lib.dr.iastate.edu%2Fetd%2F15824&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Fetd%2F15824&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/458?utm_source=lib.dr.iastate.edu%2Fetd%2F15824&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/458?utm_source=lib.dr.iastate.edu%2Fetd%2F15824&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/15824?utm_source=lib.dr.iastate.edu%2Fetd%2F15824&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

Testing non-termination in multi-threaded programs

by

Priyanka Thyagarajan

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Computer Engineering

Program of Study Committee:

Samik Basu, Co-Major Professor

Gianfranco Ciardo, Co-Major Professor

Neil Zhenqiang Gong

Iowa State University

Ames, Iowa

2016

Copyright c© Priyanka Thyagarajan, 2016. All rights reserved.

www.manaraa.com

ii

DEDICATION

I dedicate this thesis to my grandmother Mrs.Gnanasoundhari Sivaraj, who raised me to

be the person I am today.

”You raise me up, so I can stand on mountains;

You raise me up to walk on stormy seas;

I am strong when I am on your shoulders;

You raise me up to more than I can be.”

www.manaraa.com

iii

TABLE OF CONTENTS

LIST OF TABLES . v

LIST OF FIGURES . vi

ACKNOWLEDGEMENTS . vii

ABSTRACT . viii

CHAPTER 1. INTRODUCTION . 1

1.1 Overview of existing approaches for determining non-termination 3

1.2 Proposed Solution . 4

1.3 Contributions . 5

1.4 Outline . 6

CHAPTER 2. REVIEW OF LITERATURE . 7

2.1 Non-termination in sequential programs . 8

2.2 Non-termination in concurrent programs . 11

2.3 Testing multi-threaded programs . 14

2.4 Summary . 18

CHAPTER 3. TESTING FOR NON-TERMINATION 21

3.1 Preliminaries . 22

3.2 Dependency Graph . 24

3.2.1 Constructing dependency graph . 25

3.2.2 Detecting non-termination . 29

www.manaraa.com

iv

3.3 Non-termination by testing . 34

3.3.1 Determining base count . 34

3.3.2 Testing for non-termination by EXPLORE 34

3.4 Tool Description . 38

3.4.1 Tool overview . 38

3.4.2 Tool components . 41

CHAPTER 4. RESULTS . 44

4.1 Loops with inter-thread loop dependencies . 47

4.1.1 Case study-1 . 47

4.1.2 Case study-2 . 48

4.2 Nested loops with inter-thread loop dependencies 49

4.2.1 Case study-3 . 49

4.2.2 Case study-4 . 50

4.2.3 Case study-5 . 51

4.3 Loops and conditionals with inter-thread loop dependencies 53

4.3.1 Case study-6 . 53

4.3.2 Experience with CONCREST . 54

4.4 Discussion . 54

CHAPTER 5. CONCLUSION . 56

5.1 Summary . 56

5.2 Future Work . 57

5.2.1 Investigation of methods to reduce false positives 57

5.2.2 Improved identification of the scenario leading to non-termination . . . 57

5.2.3 Automated generation of remedies for non-termination 57

5.2.4 Development of guided testing strategies 58

BIBLIOGRAPHY . 59

www.manaraa.com

v

LIST OF TABLES

Table 4.1 Results of experimental evaluation . 44

www.manaraa.com

vi

LIST OF FIGURES

Figure 1.1 Example illustrating inter-thread loop dependency 4

Figure 2.1 Sample program and successive approximations for proving non-termination

through closed recurrence sets . 9

Figure 2.2 An example program for proving thread termination 12

Figure 2.3 A program for illustrating concolic testing 15

Figure 2.4 A program for illustrating con2colic testing 17

Figure 3.1 Example illustrating inter-thread loop dependency 23

Figure 3.2 An example of a dependency graph . 25

Figure 3.3 An example of a dependency graph . 25

Figure 3.4 Example for illustrating the construction of a dependency graph 28

Figure 3.5 Dependency graph with a simple cycle 30

Figure 3.6 Dependency graph with a complex cycle 31

Figure 3.7 Architecture diagram of our tool . 39

Figure 3.8 A snippet of pre-instrumented code . 40

Figure 4.1 Case study-1: Loops with inter-thread loop dependencies 47

Figure 4.2 Case study-2: Loops with inter-thread loop dependencies 48

Figure 4.3 Case study-3: Nested loops with inter-thread loop dependencies 49

Figure 4.4 Case study-4: Nested loops with inter-thread loop dependencies 50

Figure 4.5 Case study-5: Nested loops with inter-thread loop dependencies 52

Figure 4.6 Case study-6: Loops and conditionals with inter-thread loop dependencies 53

www.manaraa.com

vii

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my thanks to those who helped me with var-

ious aspects of conducting research and the writing of this thesis. First and foremost, Dr.Samik

Basu for his guidance, patience and support throughout this research and the writing of this

thesis. I would also like to thank my committee members for their efforts and contributions

to this work: Dr.Gianfranco Ciardo and Dr.Neil Zhenqiang Gong. I would additionally like to

thank Dr.Gianfranco Ciardo for his guidance during the initial stages of my graduate and re-

search career. I extend my heartfelt gratitude to my family and friends for believing in me and

being a constant source of motivation for all my endeavours. This research work was funded

by grants CCF 0954132, CCF 1155780.

www.manaraa.com

viii

ABSTRACT

We study the problem of detecting non - termination in multi - threaded programs due to

unwanted race conditions. We claim that the cause of non-termination can be attributed to

the presence of at least two loops in two different threads, where the valuations of the loop

controlling parameters are inter-dependent, i.e., value of one parameter in one thread depends

on the execution sequence in the other thread and vice versa. In this thesis, we propose a

testing based technique to analyze finite execution sequences and infer the likelihood of non-

termination scenarios. Our technique is a light weight, flexible testing based approach that

can be paired with any testing technique. We claim that testing based methods are likely to

be scalable to large programs as opposed to static analysis methods. We present an outline

of our implementation and prove the feasibility of our approach by presenting case studies

on tailored sample programs. We conclude by discussing the limitations of our approach and

future avenues of research along this line of work.

www.manaraa.com

1

CHAPTER 1. INTRODUCTION

Concurrent programming is one of the cornerstones of computing in almost all real-world

applications. However, it is challenging and in some cases, impossible to effectively analyze

concurrent programs and prove that it satisfies the desired correctness requirements. The

primary reason is, that execution paths in concurrent programs not only depend on the user

inputs, but also on interleavings between threads, which in turn, is guided by the scheduler

of the underlying computing environment. The complexity of the executions, therefore, makes

automatic formal verification ineffective for even medium sized programs if not handled with

caution. Further, this makes analysis of larger multi-threaded programs infeasible due to state-

space explosion. The effectiveness of testing based techniques also remain less than desired

because of issues of incompleteness. This is because, enumerating or analyzing all possible

program execution paths involves exhaustive exploration of both the input space and the thread

context switches space. Hence, many valid and buggy execution paths may remain unexplored.

Termination of a program is one of the primary concerns of a programmer. A program with

a non-terminating execution sequence could cause violation of a system’s safety and correctness

requirements, thereby affecting its stability. Depending on the context of non-termination, it

could also lead to resource unavailability or starvation (Cook et al. (2007), Rodrigues (2013)).

From a security standpoint, an attacker could exploit weakly designed loops by strategically

devising inputs that would cause the program to be trapped in a non-terminating execution

sequence (Rodrigues (2013)). In concurrent event-driven programming, consider device drivers

that provide event-handling services of independent threads, while communicating through

shared memory. These device drivers are permitted by operating system to temporarily take

over the execution of the threads in which the event occurred. A scenario could occur, where a

loop in the code executed by the device driver could diverge when a relevant shared variable is

www.manaraa.com

2

modified by other threads in the same driver. Such scenarios could potentially cause denial of

service, rendering the entire system unavailable. Hence, we see that non-terminating execution

scenarios can greatly compromise the underlying computing environment’s reliability.

The termination problem is the problem of determining, from a description of an arbitrary

computer program and an input, whether the program will finish running or continue to run

forever. It is one of the most studied problems in computer science and in general, is unde-

cidable even for sequential programs. In concurrent programs, the non-deterministic behavior

introduced by interleavings between threads, memory model employed and compiler optimiza-

tions, increase the complexity of this problem further. A programmmer has little control over

these concerns since they are typically handled by the compiling environment.

We focus on the following question, given a concurrent program, is it possible to determine

if there is a likelihood of a non-terminating execution sequence? Specifically, this contribution

primarily focuses on determining possible unbounded execution paths arising due to unexpected

or poor context switches (thread schedules).

Techniques for program verification can be broadly classified into: Formal verification based

techniques like model-checking/theorem proving and testing. Formal verification/theorem prov-

ing based solutions prove to be unsuitable approaches for our requirement, due to scalability

issues and need for possible human intervention. When we proceed to examine testing, we

observe: Testing based methods are adept at verifying properties that can be expressed as

assertions. Testing is a technique that requires a program to terminate. Traditionally, non-

termination is a property that cannot be expressed as assertions.

We now ask the question, is it possible to use a testing based approach to determine if

a concurrent program terminates? Our primary contribution addresses this question, and

presents a method using testing, that can infer a possible unbounded execution path (non-

termination) in a concurrent program, by testing several carefully chosen finite-path assertional

properties. We have developed a generic, programming language agnositc methodology to

detect the likelihood of non-termination in multi-threaded programs. We are also interested

in constructing a modular framework, that leverages the performance of our methodology by

allowing it to be paired with any testing technique.

www.manaraa.com

3

We employ testing as opposed to static analysis for three main reasons. Testing based

techniques are typically more scalable than static analysis methods; bugs obtained via testing

can be reproduced using the test cases; and testing does not require any special adjustments

for memory model as long as the test criteria is well-defined.

1.1 Overview of existing approaches for determining non-termination

Most research efforts have been directed in developing semi-automatic or sound, but incom-

plete methods, and heuristics to verify, and check for termination. In sequential programs, one

approach has been to ensure that any execution sequence involving cycles, (loops or recursion)

moves the program execution towards a base case for the cycle. In this respect, Cook et al.

(2005), Podelski and Rybalchenko (2004a) prove termination by using principles of ranking

functions and well-foundedness of the program’s transition relation. Another approach has

been to prove non-termination in sequential programs by ensuring the presence of set a of pro-

gram states with specific properties that imply non-termination-closed recurrence sets. Along

these lines, while Gupta et al. (2008), utilizes concolic testing to illustrate non-terminating

cases, Chen et al. (2014) utilize safety proving paired with counter-example guided abstraction

refinement to detect violation of termination.

The problem of detecting non-termination becomes more challenging when concurrency is

involved. This is because of the presence of interleavings and interferences between threads, that

can impact the entities in the program, and therefore, its temination property. In Cook et al.

(2007), the authors apply static analysis to develop sound and incomplete techniques proving

that each thread in a program will eventually terminate. Similarly, in Popeea and Rybalchenko

(2012), the authors apply rely-guarantee compositional techniques to determine termination

of each thread based on the properties of its environment (other threads). The authors of

Morse et al. (2011) and Musuvathi and Qadeer (2008) apply model checking techniques to

verify liveness properties by constraining the context switches or considering fair scheduling.

Atig et al. (2012b) apply model-checking along with the principle of scope-bounding to verify

liveness properties and liveness violation. Perhaps the closest to our approach is the technique

presented in Atig et al. (2012a). This technique involves converting a multi-threaded program

www.manaraa.com

4

1: while x ≤ 5 do

2: Do-something

3: x+ +

4: y −−
5: end while

1: while y ≤ 5 do

2: Do-something

3: y + +

4: z −−
5: end while

1: while z ≤ 5 do

2: Do-something

3: z + +

4: x−−
5: end while

(a) Thread 1 (b) Thread 2 (c) Thread 3

Figure 1.1 Example illustrating inter-thread loop dependency

into its sequential counterpart and inserting carefully selected assertions, violations of which

proves the presence of non-termination under fair scheduling.

1.2 Proposed Solution

We focus on non-terminations, that are caused due to interferences between threads. That

is, we assume the threads do terminate if allowed to execute in isolation. Therefore, the

non-termination is manifested in the execution of certain specific program fragments in an

unbounded fashion, i.e., some loop gets executed unboundedly. Furthermore, as the cause of

non-termination is due to interference, there must be at least two threads, whose execution

remains trapped in loops, and the execution of one thread continues to interfere with the exe-

cution of the other. To detect the possibility of such scenarios leading to the non-termination,

we propose a technique, that analyzes the result of testing certain carefully selected assertions.

Consider the multi-threaded program shown in Figure.1.1. The program consists of three

threads, where each thread has a loop conditional over a shared variable, which is modified in a

different thread. For example, Thread 1 has a loop conditional over the shared variable x and

is modified by Thread 3. It therefore becomes apparent, that there is a possible unbounded

execution. This execution sequence can occur if for each thread, before the loop condition is

checked, the other thread modifies the loop controlling parameter.

We start by determining the number of times each loop in each thread is executed, we call

this value base count. This can be done by instrumenting each loop in each thread, with a

count variable (say cnti in thread i, for all i ∈ [1..3]), such that, it is incremented each time

the loop unfolds and executing each thread individually. In our specific example, we note that

www.manaraa.com

5

the base count will be 5 for each loop if x, y, z are initialized to 0. Our next step involves

placing assertions of the form assert(cnti ≤ base count) in each of these threads. We use testing

to check for violations of these assertions. In case of an assertion violation, we examine the

program trace leading to the assertion violation, for count variable(s) pertaining to different

thread(s).

In our example, after determining the base count for each loop in each thread, we test the

program and find an assertion violation on cnt1 in Thread 1. We analyze the program trace

and find the appearance of cnt3 corresponding to the Thread 3. Similarly, testing the example

program with assertion on cnt2 yields an assertion violation with cnt1 in the program trace,

testing the example program with assertion on cnt3 yields an assertion violation with cnt2 in

the program trace. We make the following important observations:

• The number of times each loop in each thread unfolds depends on the the interferences.

• There exists a circular or mutual interdependency between each loop in each thread.

We can infer that these threads can continue to interleave in this fashion leading to an un-

bounded execution of the program. Hence, we use testing based techniques to infer the like-

lihood of an infinite execution sequence by verifying assertional properties on finite execution

paths.

1.3 Contributions

The following are the contributions of this thesis:

• Methodology : We propose a testing based method, to determine whether a multi-

threaded program terminates or not. We are specifically interested in identifying non-

terminating execution sequences due to unexpected or bad thread schedules. Our method

is based on inferring the existence of unbounded execution path(s), by violations of asser-

tions on finite execution paths. We examine the program trace to establish dependencies

between threads. We deduce the presence of non-terminating execution path(s) by check-

ing for circular or transitive dependencies between loop conditionals on shared variables

in different threads.

www.manaraa.com

6

• Dependency Graph : We also propose the dependency graph, an effective data structure

to represent the dependencies between threads. We present a reduction from detecting

non-termination in multi-threaded programs to cycle detection in this dependency graph.

• Tool implementation : We have implemented a framework for detecting non-terminating

behavior in concurrent programs. To the best of our knowledge, this is the first testing

based approach to detect the likelihood of non-termination. We verify the correctness of

our approach by testing our tool on systematically enumerated sample programs. Pre-

liminary results reveal the feasibility of our approach.

• Identification of countermeasures: In the event of identification of non-terminating

behavior, our dependency graph aids in discerning the specific threads and loops that

caused the unbounded execution. Hence, our tool aids in devising possible remedies to

correct the unsafe program behavior without compromising the advantages of concur-

rency.

1.4 Outline

The thesis is organized into six chapters. In Chapter 1, we provided an introduction to

our work, our problem statement and a brief description of our methodology. In Chapter 2,

we present a discussion of the existing work that attempt to solve problems similar to our line

of research. We delineate our methodology and contributions. In Chapter 3, we present our

algorithm for determining non-termination. Next, we describe our data structure for effectively

storing the inter thread dependencies and present our algorithm for cycle detection. We proceed

to outline the architecture of our tool and details of implementation. In Chapter 4, we present

our case-studies on sample programs to illlustrate the feasibility of our approach. In Chapter 5,

we summarize inferences from our experiments, limitations of our approach and discuss possible

directions for extension of our work.

www.manaraa.com

7

CHAPTER 2. REVIEW OF LITERATURE

Discovering programming errors and bugs in code, is a field of research, that has been well

pursued. Techniques for analyzing a program for discovering bugs, fall into either one of the

following categories: static analysis or dynamic analysis based techniques. Formal methods

based techniques like model-checking, theorem - proving, satisfiability modulo theories fall into

the former category. While, dynamic analysis involves evaluation and testing of a program by

executing it in real-time.

Program verification in the concurrent domain comes with its own complexities. Sequential

programs are verified or tested by examining their program behaviors over the input space.

However, a typical execution sequence in a concurrent program involves multiple threads that

share memory address space and interleave with each other. These interleavings could cause

unwanted data race conditions in the program. In addition to the inputs, each thread schedule

also causes the program to take a distinct execution path. Further, the order of these inter-

leavings is decided by external factors like processor utilization and I/O activity.

One of the challenging aspects of verifying the correctness requirements of a concurrent pro-

gram, involves extremely exhaustive exploration of all possible distinct program behaviors, that

are characterized by both inputs and thread schedules. Typical methods to treat this state-

space explosion include, sequentialization of the concurrent program (Bouajjani et al. (2011),

Inverso et al. (2014)), fair scheduling (Emmi et al. (2011)) and context-bounding (Qadeer and

Rehof (2005)). In this work, we focus on the liveness violation or live-lock property: Does

a multi-threaded program terminate? Most of the research in this area, involves verifying or

proving or disproving this property in sequential programs. However, it is a relatively less

trodden path in the domain of concurrent programs.

www.manaraa.com

8

2.1 Non-termination in sequential programs

Safety properties can be verified by the violation of assertions and require a finite path

counter-example. However, non-termination modeled as a liveness violation/ livelock requires

the existence of an unbounded execution path. In general, deciding if a program terminates

is an undecidable problem. Therefore, the approaches for verifying if a program terminates

have been directed towards, studying the structure of the program and how its entities are

manipulated and develop sound/semi-automatic, but incomplete methods and heuristics.

This line of research involves constructing non-termination proofs by invariant generation or

looking for the occurrence of recurring program states. Velroyen and Rümmer (2008) prove

non-termination by showing that there exists a set of input values such that program does not

terminate. Termination proofs are generated by invariant generation followed by theorem prov-

ing. The theorem prover attempts to construct a proof for non-termination from the invariants

generated by the invariant generator. If unsuccessful, the incomplete proofs are used to refine

the invariants. Several heuristics are used for invariant scoring, invariant filtering that help in

weeding out irrelevant invariants and prioritizing the more useful ones. Larraz et al. (2014)

uses MAX-SMT based invariant generation to prove non-termination. The authors analyze the

program’s control flow graph and for each strongly connected sub-graph, they use MAX-SMT

techniques to discover a formula with very specific properties at each node. This formula should

satisfy two properties. The first property being, quasi-invariance meaning, if the formula holds

for one execution sequence it should continue to hold thereafter. Secondly, the formula should

be edge closing meaning, it forbids the execution of any outgoing transition that would leave

the strongly connected sub-graph.

Gupta et al. (2008) (TNT) utilizes concolic testing (Sen and Agha (2006a)) to generate candi-

date lassos. Here, a lasso represents a finite program path called stem followed by another finite

program path called loop. The loop is a syntactic cycle in the control flow graph. The control

flow graph of the lassos are then analyzed for finding recurrent sets to prove non-termination,

through template based constraint solving. The authors define a recurrent set to be a set G of

program states, such that, the following conditions are met:

www.manaraa.com

9

• G is non empty, atleast one state s in G is reachable.

• Every state s ∈ G has a transition.

• Every transition in G remains within G.

Concolic testing is a systematic testing method that involves the iterative, simultaneous sym-

bolic and concrete execution of the program. The constraints generated from the symbolic

execution are used to generate concrete inputs for the next iteration of concrete execution.

This way, the program now explores a previously unexplored path. The generation of lassos

continues until all lassos are extracted or the algorithm concluded with non-termination.

Figure 2.1 Sample program and successive approximations for proving non-termination

through closed recurrence sets

Chen et al. (2014) encodes non-terminaton as a safety property by using closed reccurence

sets(a stronger form of recurrence sets) proposed by Gupta et al. (2008). The authors use a

safety prover to verify this property over an under-approximation of original program’s con-

trol flow graph. If this property holds, the counter-example serves to be a witness to non-

www.manaraa.com

10

termination. In the event of violation of the safety property, the counter example is used to

refine the under-approximation, so that, the path leading to the violation of the property is

weeded out. In this manner, the authors first determine if a loop can have an unbounded

execution path, followed by which, they use a realizability checker to determine if the loop is

reachable (i.e. finding the lasso followed by stem).

Consider, the example in Figure.2.1(a) a program with a possible non-terminating execution

sequence for appropriate input values and non-deterministic choices. The algorithm introduce

under-approximation by inserting assume(true) at the beginning of the program and after

every non-deterministic input assignment. assert(false) is inserted at the exit of the loop, to

encode never terminates condition. The safety prover provides a counter-example of the form

k < 0∧ i < 0, this is used to refine the under approximation, the initial assume(true) is modi-

fied to assume(k ≥ 0) as shown in Figure.2.1(b). This ensures the counter-example that lead to

violation of never terminate is removed. For the next iteration, the safety prover provides the

counter-example, k ≥ 0∧ i < 0. Hence assert(false) was reachable. The under-approximation

is now refined by including i ≥ 0 in the assume statement as shown in Figure.2.1(c). In the

next iteration of safey proving, the counter-example presented is k ≥ 0∧ i ≥ 0 followed by i < 0

during the non-deterministic choice. To handle this path, the condition assume(true) after

the non-deterministc choice is changed to be assume(i ≥ 0) as shown in Figure.2.1(d). Now,

there exists no execution path that could lead to assert(false). The algorithm has successfully

found an underapproximation of the program that never terminates.

The next step is to prove the existence of a stem, in other words, that the loop is reachable

form the initial state. This is done by placing an assert(false), before the loop as shown in

Figure.2.1(e) and running the safety prover. A counter-example provided by the safety prover

proves that the loop is reachable. The authors, then proceed to check the satisfiability of

the generated underapproximation constraints in Figure.2.1(f) to verify the soundness of the

under-approximation. Hence, this approach explores the possibility of proving or analyzing

non-termination by safety checking.

Cook et al. (2014) propose utilizing a combination of over-approximation and under-approximation

combined with constraint solving for generating closed recurrence sets. The advantage of this

www.manaraa.com

11

approach is the ability to efficiently handle non-linear, non-deterministic and heap based state-

ments by abstractions or over-approximations.

Computing ranking functions/proving the well-foundedness of the transition relation of a pro-

gram, are classical techniques for constructing termination arguments. These notions are based

on proving that for every transition, the program execution converges towards the exit con-

dition of a loop or recursive procedure. Consider a program trace π = s0 → s1 → s2....,

where si represent individual program states and → represents a single step transition. To

prove termination naively, we need to prove that there exists no such infinite sequence. The

rankingfunction method, involves finding a function ρ that maps the program states to a

well-founded, ordered set W , such that ρ(s′) < ρ(s) for all s→ s′. Cook et al. (2006) discuss a

method involving generation of ranking functions aided by counter example guided abstraction

refinement based on Podelski and Rybalchenko (2004b). More specifically, this involves show-

ing for the transitive closure over the transition relation restricted to reachable states(RI
+),

there exists a decreasing ranking function. More formally, this is proved by showing that there

exists a disjunction of well-founded relations T such that RI
+ ⊆ T . Given a program P , it

is transformed into P ′, such that an error condition is not reachable only if RI
+ ⊆ T holds.

Hence, a safety checker can be used to verify this. A counter-example will be converted into

an input for a constraint solver based rank function systhesizer. The rank function generator

outputs a well-founded rank relation W , that is used to refine the termination argument T (i.e.

T = T ∪W). The notion of finding ranking function to construct termination argument for

programs has been further explored by Cook et al. (2005), Podelski and Rybalchenko (2004a),

Cook et al. (2010), Cook et al. (2013).

2.2 Non-termination in concurrent programs

We begin, by presenting a discussion on model-checking based approaches for detecting live-

ness violation, since non-termination itself can be viewed as liveness violation or live-lock. Morse

et al. (2011) explores a context bounded model checking approach for checking LTL-liveness

properties in multi-threaded programs. State hashing is used to prune the redundant interleav-

ings. A Büchi automata of the negated LTL property is transformed into a monitor thread.

www.manaraa.com

12

1: lock(lck)

2: while (x > 0) do

3: atomic(x−−)

4: end while

5: unlock(lck)

1: while (nondet) do

2: atomic(x−−)

3: end while

1: while (nondet) do

2: y = y + 1

3: lock(lck)

4: atomic(x−−)

5: unlock(lck)

6: end while

(a) Thread 1 (b) Thread 2 (c) Thread 3

Figure 2.2 An example program for proving thread termination

The program to be tested is instrumented with this monitor thread, the instrumented program

is checked using a SMT based model-checker. Along these lines, Musuvathi and Qadeer (2008)

developed another context bounded model checker (CHESS) for verifying liveness properties,

by employing an explicit fair-scheduler, that considers only a subset of the interleaving space.

fair schedules may be considered as, schedules in which, if a thread is scheduled infinitely often,

it is also enabled for execution infinitely often. Thus, there is no thread starvaton. Atig et al.

(2012b) describes the notion of scope-bounding as opposed to context-bounding for verification

of liveness properties in multi-threaded programs. scope - bounding states that, between a call

and return of any procedure in any thread, there should be a finite number of context switches

or interleavings. In other words, if a thread executes a procedure, it should empty the call

stack after atmost k context-switches. This does not place an overall limit on the number of

context-switches for the program, hence a thread could execute forever. Thus, this work could

be potentially used for verifying termination of a program.

Cook et al. (2007) extends ranking function based termination proofs for sequential pro-

grams to multi-threaded programs, by generating environmental abstractions to approximate

the behavior of surrounding threads. Here, as opposed to proving the overall termination of

the program, the authors try to prove individual thread termination. The method returns a set

of conditions that a thread requires of its environment to terminate. This set of conditions is

called A or the agreement, it is in the conjunctive normal form and it is iteratively constructed.

Consider the example in Figure.2.2. To prove that Thread 1 terminates, the algorithm begins

by constructing a naive agreement A1 = true, meaning no restrictions are placed on the way

shared variables are modified Thread 2, Thread 3. The algorithm now attempts to come up

www.manaraa.com

13

with termination proofs for the non-deterministic alternate execution of the Thread 1 and re-

strictions imposed by A1. In this case, it is trurly non-deterministic. The A1 is not strong

enough to prove termination, the termination check comes up with the counter example corre-

sponding to x = x− 1, x = nondet, assume(x > 0). Based on the counter example generated,

the A1 is refined to A2 = true ∧ (x′ ≤ x)(primed variables correspond to variable valuation

following a transition). For the Thread 1 , A2, the termination checker fails to provide a counter

example, a successful approximation has been derived.

Next step is to analyze if threads, Thread 2, Thread 3 modify shared variable x as mandated

by A2. For Thread 2, this is true, since an atomic(x − −) can only decrement the value of x.

For Thread 3, this is false, since there exists a non-deterministic update to x. Hence a new

agreement A3 is generated. A3 = true∧ (x′ ≤ x)∨ (lck 6= 1). This states that the Thread 3 can

make non-deterministic updates to x on when lck is not acquired by Thread 1. The newly gen-

erated agreement A3 and Thread 1 are subjected to termination checking. No counter example

is generated. Hence the termination proof of Thread 1 is given by true ∧ (x′ ≤ x) ∨ (lck 6= 1).

In this way, Cook et al. (2007) prove thread modular termination.

Another approach along this line is Popeea and Rybalchenko (2012)’s method which in-

volves constructing compositional termination arguments for multi-threaded programs using

rely-guarantee reasoning. Rely guarantee reasoning first developed in Jones (1981), allows

thread-modular reasoning by placing certain assertions or restrictions on the behavior of the

other threads. More specifically, these assertions restrict the way environmental threads mod-

ify global variables. This method relies on the concepts of proving that the transitive closure

of a thread’s transition relation is well-founded for thread-modular termination. This is done

by candidate ranking function synthesis as described in Podelski and Rybalchenko (2004a).

Environment transitions keep track of the effect of the other threads on the thread of interest.

In Cook et al. (2007), only a restricted class of environment transitions were taken into ac-

count, since only global variables were considered. Popeea and Rybalchenko (2012) define the

environment transitions to keep track of both global variables and local variables pertaining

to the other threads. This proof rule is automatically constructed by a transition predicate

abstraction and refinement procedure, that involves solving horn clauses.

www.manaraa.com

14

Atig et al. (2012a) reduces the problem of detecting non-termination in multi-threaded

programs to a reachability problem in sequential programs. This approach (MUTANT) de-

tects non-termination in multi-threaded programs, by violations of carefully selected assertions

in their sequential counterparts under fair scheduling. Based on the context bound, an in-

strumented sequential program is generated, this annotated sequential program is fed to an

Satisfiability Modulo Theory based bounded model-checker. The authors characterize any

non-terminating execution sequence in a program to consist of a stem and repeated executions

of a lasso. Stem represents a finite set of executions, lasso represents the repeated execution

of the same set of actions over and over again. The authors place a context bound K ∈ N,

where K = k1 + k2, k1, k2 are context bounds of stem and lasso respectively. The general idea

is to show that any non-termination in a multi-threaded program can be decomposed into a

stem and lasso. For each period of lasso, each thread encounters the same sequence of global

state evaluations at the context-switch points(when the execution of a thread is interleaved by

another thread). During each lasso period, each thread also re-encounters the same sequence

of topmost stack-frame evaluation, since the stack should be non-decreasing in the lasso period

for a non-terminating execution sequence to occur. The authors infer the existence of a non-

terminating execution sequence by analyzing the global state evaluations, topmost stack frame

evaluations during a single lasso period, for each thread t ∈ Tid. The authors handle state

space explosion by considering fair schedules, in which every thread that is scheduled infinitely

often, is also enabled infinitely often. Hence, the method reports only fair non-terminations in

concurrent programs. This method is perhaps, the closest to our line of research.

2.3 Testing multi-threaded programs

In this thesis, we present a novel, light-weight, testing based methodology for detecting non-

termination in multi-threaded programs. While we pair random testing with our algorithm to

validate the efficiency of our approach, our modular framework can be used in conjunction with

any testing technique. In concurrent programs, it is imperative to note, that in addition to

user input, the thread schedule or order of context switching also causes a distinct program

behavior. Recall, that concurrent programs have inherent non-deterministic behavior. Specifi-

www.manaraa.com

15

dosomething (int x, int y)

z = 2y

if (z = x) then

if (x < y + 10) then

error

end if

end if

Figure 2.3 A program for illustrating concolic testing

cally, the non-determinism in the schedule order relies on external factors like memory models,

complier optimizations and so forth. We now present a discussion on certain systematic testing

techniques that exhaustively explore both the input and interleaving space.

Farzan et al. (2013) and Sen and Agha (2006b) describe adaptations of concolic testing tech-

nique to multi-threaded programs. concolic testing (CUTE) originally developed by Sen and

Agha (2006a) uses concrete execution combined with symbolic execution to systematically ex-

plore all possible program execution paths. The authors begin, by executing the program

concretely with inputs generated by a random input generator. The symbolic execution follows

concrete execution, at the end of the execution, symbolic constraints that represent the current

path of execution are extracted. The symbolic path constraint is of the form of a conjunction

of linear inequalities or predicates, that represent individual branch constraints. The predicate

corresponding to the program’s last branch executed, is negated and sent to a constraint solver.

The modified symbolic path constraint corresponds to a set of conditions, that should be sat-

isfied for the program to take a previously unexplored path. The constraint solver returns a

set of inputs that satisfy the modified symbolic path constraint. The generated test inputs are

then passed for the next round of concrete execution. This is done in a loop till there exists

no more paths to be processed. This way the input search space is systematically explored in

a manner that could possibly prevent the testing tool from re-exploring previously explored

program path.

Consider, the example in Figure.2.3, the function dosomething has two input arguments

x and y. For the error condition to be reached, the program should take an execution path,

that enters both the conditional statements. Concolic testing begins, by performing concrete

www.manaraa.com

16

execution for some arbitrary input values (x = 20, y = 7), following the corresponding symbolic

execution (x = x0, y = y0, z = 2y0), the symbolic path constraints (2y0 6= x0) are extracted.

The path constraint contains a single branch constraint negating the constraint (2y0 6= x0),

solving for y0, x0, we get x0 = 2, y0 = 1. The next round of concrete execution is performed

with the newly generated inputs. The program now follows a new execution path, z = 2,

z = x, hence execution enters the first conditional statement, however, the second conditional

statement fails. The symbolic path constraint extracted is (z0 = x0)∧ (x0 ≥ y+ 10). Negating

the last branching constraint, (z0 = x0)∧ (x0 < y+10), applying constraint solving techniques,

we get x0 = 8, y0 = 4. Applying these newly generated inputs, the program follows z = 8,

z = x, x < y + 10 (8 < 14). Hence, the error state is reached. In this fashion, concolic testing,

systematically generates test inputs to discover bugs.

Sen and Agha (2006b) present an extension of concolic testing (JCUTE) to multi-threaded pro-

grams to methodically explore the input and interleaving space. The authors propose a method,

where they begin testing with concrete execution, symbolic execution extracts symbolic path

constraints. Unlike symbolic path constraints in sequential programs, these constraints repre-

sent the path currently explored as a function of both the inputs and the interleaving. In the

event, that the modified symbolic path constraint is not solvable, a race flipping technique is

employed. The race flipping technique involves the following, when two threads are involved in

a race condition, a new schedule is generated such that, one of the threads involved in the race

condition is delayed as much as possible. These steps are performed in a loop till all possible

program execution paths are processed. It is important to note, that this technique explores

the interleaving space only when a previously unexplored program path could not be explored

by input exploration.

Farzan et al. (2013) present a more complete testing technique (CONCREST) that performs

the exhaustive exploration of all possible program execution paths bounded by k interferences.

Consider a program with two threads, a shared variable x, if a read operation on x in Thread

1, is preceded by a write operation on x in Thread 2, we say, Thread 2 interferes with Thread

1. Here, shared read and shared write refer to read and write operation performed by a thread

on a shared global variable. The authors propose a method which uses concolic testing com-

www.manaraa.com

17

1: y = 0

2: if (y > 0) then

3: error

4: end if

1: x = input()

1: x = 0

2: if (x = 2) then

3: y = 1

4: end if

(a) Thread 1 (b) Thread 2 (c) Thread 3

Figure 2.4 A program for illustrating con2colic testing

bined with an interference scenario generator. An interference scenario corresponds to a new

path of execution obtained by negating branch conditions in the program trace obtained from

concolic execution. Each interference scenario is added to a central forest structure called the

interference forest. For each interference scenario generated, a realizability checker examines,

if there exist a set of inputs and a thread schedule that would lead to the scenario. If such a

set of inputs and a thread schedule exists, the scenario is said to be realizable. These set of

inputs, thread schedule are used for the next iteration of concolic execution. Every unrealiz-

able scenario is pushed into a list to be processed in the forthcoming iterations. The algorithm

begins by executing each thread individually, then proceeds to do the following in a loop till

all interference scenarios are explored or the context bound is reached: concolic execution,

interference scenario generation and realizability checking. For each iteration in the loop, the

algorithm tries to associate a previously unrealisable scenario with appropriate shared writes

from the interference forest, that might make it realizable.

Consider the example in Figure.2.4 consisting of three threads. x and y are global variables.

The goal here is to reach the error condition in the Thread 1. Con2colic testing detects the

bug in the following manner:

• Concolic testing on Thread 1, gives a program trace showing, write(y, 0), read(y), (y ≤ 0).

The interference scenario generator now produces the scenario write(y, 0), read(y), y > 0.

Now, this path cannot be reached unless, before the read(y) is performed, y is modified

to a value greater than 0 by a different thread. In other words, there exist no thread-local

way of reaching this specific program location. Hence, the realizability checker returns

false.

www.manaraa.com

18

• Concolic testing on Thread 2, returns a program trace write(x, userinput). There exists

no more unexplored paths in Thread 2. The unrealizable scenario in Thread 1 has no

matching shared write in the central forest structure. Hence, no action is taken.

• Concolic testing on Thread 3, returns a program trace write(x, 0) , read(x), x 6= 2.

The interference scenario generator returns a scenario : write(x, 0), read(x), x = 2. The

realizability checker renders this to be not thread-locally realizable. However, there exists

a shared write to x in Thread 2 in the central forest data structure. Hence, an interference

is introduced such that after, write(x, 0), an interference from Thread 2 shared write on

x occurs, before the read(x). The inputs and thread schedule corresponding to this is

generated for the next iteration of concolic testing. The unrealizable scenario in Thread

1 has no matching writes in the central forest structure. Hence, no action is taken.

• Concolic testing executes the newly insert inserted scenario, the program trace returned

is write(x, 0), write(x, 2) - interference from Thread 2, read(x), x = 2, write(y = 1).

There are no paths to be explored in Thread 2. The previously unrealizable scenario in

Thread 1 has a matching shared write in Thread 3. Hence an interference is introduced

before the shared read on y corresponding to the if(y > 0). Inputs and thread schedule

satisfying this newly generated scenario are generated.

• During the next iteration of the algorithm, the program is executed, with the newly

generated inputs and thread schedule. The program takes the execution path given by,

write(y, 0), write(y, 1) - interference from Thread 3, y > 0, error. Hence the error

condition is reached.

In this way, con2colic performs a systematic search over the input and interleaving space to

explore all possible program execution paths bounded by k interferences.

2.4 Summary

Detecting non-termination is an undecidable problem in general. Unlike verification of

safety properties, that require a finite path witness, non-termination which can be viewed as

www.manaraa.com

19

liveness violation requires the existence of an unbounded execution path. Most methods for de-

tecting non-termination in sequential programs involve analyzing the structure of the program

and how the data is modified. Detecting or proving non-termination in sequential programs has

been vastly explored. Classical approaches include proving non-termination or proving termi-

nation. Techniques like invariant generation Velroyen and Rümmer (2008), Larraz et al. (2014),

generation of recurrence sets Gupta et al. (2008), Chen et al. (2014), Cook et al. (2014) are used

for constructing non-termination proofs. Ranking functions, well-foundedness of transition re-

lation (Podelski and Rybalchenko (2004b), Cook et al. (2005), Cook et al. (2006), Podelski and

Rybalchenko (2004a), Cook et al. (2010), Cook et al. (2013)) are techniques used for proving

termination of sequential programs. In general, these techniques are sound or semi-automatic

and incomplete.

In the concurrent domain, Morse et al. (2011), Musuvathi and Qadeer (2008), Atig et al.

(2012a) represent three different approaches towards bounded model checking for verifying

liveness properties. They handle state-space explosion by context-bounding, fair scheduling

and scope-bounding respectively. Popeea and Rybalchenko (2012), Cook et al. (2007) are

static analysis based methods that consider thread modular termination, while placing asser-

tions on the other threads. Our approach is the closest to Atig et al. (2012a). This approach

involves converting a concurrent program to an instrumented sequential program, violations of

assertions in the sequential program are used to detect non-termination under fair scheduling.

In general, all existing approaches are based on static analysis. To the best of our knowledge,

our approach is the first testing based method for detecting the likelihood of non-termination

in multi-threaded programs. Adopting a testing based methodology to detect non-termination,

gives us certain significant advantages as compared to static analysis techniques. Firstly, test-

ing based techniques are more scalable than static analysis based techniques. Secondly, false

positives can be easily verified, since bugs reported by testing can be recreated. Lastly, testing

based approaches do not require explicit adjustments to handle non-determinism introduced

by the type of memory model or compiler optimizations.

In this thesis, we have focused on developing a generic testing based methodology to detect

non-termination in multi-threaded programs by carefully inserting assertions. The modularity

www.manaraa.com

20

of our implementation, allows our technique to be used in combination with any testing tech-

nique for multi-threaded programs. In this chapter, we presented a short discussion on some

of the more complete testing techniques for testing muli-threaded programs. con2colic Farzan

et al. (2013), an adaptation of concolic testing for multi-threaded programs, proves to be a

promising technique in exhaustive test case generation by the systematic exploration of both

the input and thread context space. In this thesis, we present a validation of our method’s

feasiblity by using random testing.

www.manaraa.com

21

CHAPTER 3. TESTING FOR NON-TERMINATION

In this chapter, we describe our methodology to detect non-terminating execution sequences

in multi-threaded programs. We focus on developing a testing based solution for detecting the

likelihood of non-termination. Testing is only capable of verifying properties of finite program

traces. Hence, our method involves identifying violations of carefully inserted assertions to

infer possible inter-thread interferences, that can cause non-termination. We utilize a graph

data structure dependency graph to represent and keep track of such dependencies. We reduce

the problem of determining the potential of a concurrent program to have a non-terminating

execution sequence, to that of detecting cycles in our dependency graph. Our method has the

following features:

• Implicit handling of non-determinism caused by memory models:

Non-determinism is inherent in multi-threaded programs, one of the ways they are im-

parted, are through compiler optimizations and memory models. These optimizations

can influence the order of reads and writes to potentially shared variables. Such changes

in orderings might lead to unwanted data race conditions. Unlike static analysis based

approaches, our approach being testing based, does not require explicit handling or ad-

justments to consider such non-determinism.

• Language agnostic:

The principal goal of our work, is to pave the way for utilizing testing based techniques in

determining when a multi-threaded program may not terminate. We propose a methodol-

ogy that can be easily adapted to testing programs written in a wide range of programming

languages rather than developing an implementation that is specific to a programming

language.

www.manaraa.com

22

• Modularity :

Our modular implementation gives the flexibility of pairing our technique with any of the

popular testing methods like concolic by Sen et al. (2005), con2colic testing by Farzan

et al. (2013), directed automatic random testing by Godefroid et al. (2005) and symbolic

testing Cadar and Sen (2013). Our approach being testing based, the completeness and

efficiency of our method is directly attributed by that of the underlying testing technique

deployed. In this thesis, we have integrated our method with random testing to validate

the feasibility of our approach.

3.1 Preliminaries

In order to explain our solution, we introduce the terms inter-thread loop dependency, base

count and count violation. Consider a multi-threaded software involving n threads. Each

thread’s execution involves at most k loops.

Definition 3.1.1. An inter-thread loop dependency occurs when the execution of j-th loop in

the i-th thread depends on the execution of j′-th loop in the i′-th thread. That is, the loop

controlling parameter in j-th loop of i-th thread is modified by some j′-th loop in the i′-th

thread.

We denote this by, 〈i′, j′〉 7→ 〈i, j〉.

Definition 3.1.2. The base count is the number of times a loop in a thread unfolds on it

own, in the absence of interferences from other threads. Each loop in each thread is associated

with a specific base count, that can be computed by executing the software in a controlled

environment without any inter-thread interferences.

Definition 3.1.3. Given the execution of a concurrent software, a count violation occurs when

there exists a loop in some thread such that the number of times the loop unfolds exceeds the

base count due to inter-thread loop dependencies.

For a non-terminating execution sequence to occur due to interferences, we require more

than one loop in different threads, whose execution continues to be trapped in loops, while the

www.manaraa.com

23

1: while x ≤ 5 do

2: Do-something

3: x+ +

4: y −−
5: end while

1: while y ≤ 5 do

2: Do-something

3: y + +

4: z −−
5: end while

1: while z ≤ 5 do

2: Do-something

3: z + +

4: x−−
5: end while

(a) Thread 1 (b) Thread 2 (c) Thread 3

Figure 3.1 Example illustrating inter-thread loop dependency

execution of one of the threads affects the other. Hence, non-termination in multi-threaded

programs is characterized by such mutual/circular inter-thread loop dependencies between more

than one threads combined with count violations.

Formally, we denote this by saying there exists a likelihood of non-termination in multi-

threaded programs, if,

∃〈i, j〉, 〈i′, j′〉s.t.〈i, j〉 7→∗ 〈i′, j′〉, 〈i′, j′〉 7→∗ 〈i, j〉 (3.1)

where, i ∈ [1, n], n is the number of threads

where, j ∈ [1, k], k is the maximum of number of loops in any thread.

where, 7→∗ is the transitive closure of 7→ over T := {1, ...n}

Consider the example in Figure.3.1 with three threads. We observe, that the loop controlling

parameter in Thread 1 is modified by Thread 3, the loop controlling parameter in Thread 2

is modified by Thread 1 and loop controlling parameter in Thread 3 is modified by Thread 2.

We note the following:

• We observe, transitive/circular inter-thread loop dependencies of the form 〈1, 1〉 7→ 〈2, 1〉,

〈2, 1〉 7→ 〈3, 1〉, 〈3, 1〉 7→ 〈1, 1〉. Hence, there exists transitive closure of the form 〈i, j〉 7→∗

〈i′, j′〉 and 〈i′, j′〉 7→∗ 〈i, j〉.

• For each of these threads, these inter-thread loop dependencies can cause a count violation.

• If these dependencies continue to interfere before each time the loop conditional is checked,

these threads can be trapped in loops forever.

www.manaraa.com

24

Using testing based techniques paired with appropriately selected assertions, to identify

such dependencies is the central to our method. Our method, involves the following:

• Identify count violations due to inter-thread loop dependencies.

• Identify transitive closures of inter-thread loop dependencies over the set T := {1,, n},

as defined in Equation.3.1.

3.2 Dependency Graph

As discussed in the previous section, our method to identify the likelihood of non-termination

relies on identifying count violations and inter-thread loop dependencies. These count violations

and inter-thread loop dependencies are obtained by violation of carefully inserted assertional

properties. In this section, we present the dependency graph data structure for encoding inter-

thread loop dependencies and analyzing them to detect presence of non-terminating execution

sequences.

Definition 3.2.1. Consider a program with n threads, with k to be the maximum number

of loops in any thread. A dependency graph DG = (V,E), where V is the set of nodes and

E is the set of directed edges(E ⊆ V × V). A node v ∈ V is labeled with a set of at most t

(1 ≤ t ≤ n × k) tuples of the form 〈i, j〉, where, i ∈ [1, n] and j ∈ [1, k] . Here, the i’s are

pair-wise disjoint. Any edge e ∈ E has a source and destination node such that, the destination

node is labeled with exactly one tuple.

Definition 3.2.2. The semantics of the edge is as follows: An edge from node v to v′ indicates

the inter-thread loop dependency as follows:

(a) the destination node v′ of any edge is labeled by one tuple 〈i′, j′〉.

(b) If the source node v of the edge is labeled by {〈i1, j1〉, 〈i2, j2〉...〈il, jl〉}, then the counting

violation of j′-th loop in the i′-th thread involves atleast one jm-th loop in the im-th

thread, ∀m ∈ [1, l] .

Figure.3.2 shows a sample dependency graph. Each node represents a thread-loop pair in

the program and the edges represent inter-thread loop dependencies between thread-loop pairs.

www.manaraa.com

25

2, 1 3, 1

1, 1

3, 1

2, 1

1, 1 2, 1

Figure 3.2 An example of a dependency graph

3, 1

2, 1

3, 2

Figure 3.3 An example of a dependency graph

For example, the edge from node with label 〈2, 1〉 to node with label 〈3, 1〉, indicates that there

exists a dependency from thread-loop pair 〈2, 1〉 to thread-loop pair 〈3, 1〉, which causes a count

violation in the latter. Similarly, the edge from node withl label 〈〈2, 1, 〉〈3, 1〉〉 to a node with

label 〈1, 1〉 indicates that both the thread-loop pairs 〈2, 1〉, 〈3, 1〉 interfere with the thread-loop

pair 〈1, 1〉, causing a count violation in the latter.

3.2.1 Constructing dependency graph

As discussed in the previous sections, when represent the inter-thread loop dependencies

causing count violations in the dependency graph. Let us consider, an inter-thread loop de-

pendencies from a set of thread-loop pairs AV to a thread-loop pair v. Every sub-group of

thread-loop pairs in AV , such that they have the same threadidentifier, is treated as a dis-

junctive dependency. That is, there exists an inter-thread loop dependency from either one of

these thread-loop pairs, that causes a count violation in the destination node v. Every thread-

loop pair with distinct threadidentifier in AV , is treated as a conjunctive dependency. In this

case, for aN inter-thread loop dependency to cause a count violation in destination node v, the

dependency must involve all the thread-loop pairs with distinct threadidentifiers.

We construct the dependency graph by segregating these dependencies into a disjunction of

conjunctions. For each conjunctive dependency, we represent the thread-loop pairs involved in

www.manaraa.com

26

Algorithm 1 Algorithm for constructing dependency graph

1: procedure ConstructGraph(v, AV, G)

2: addnode(v)

3: M = ∅ . 2-D list, each sub list is a list of tuples

4: while AV 6= ∅ do

5: templist = ∅ . temporary list of tuples

6: thread← thread id of AV [0] (first element of E)

7: templist← AV [0]

8: remove AV [0]

9: for (i = 0; i <| AV |; i+ +) do

10: if thread id of AV [i] = thread then

11: append AV [i] to templist

12: else

13: break

14: end if

15: end for

16: if M 6= ∅ then

17: sindex← 0

18: eindex←|M |
19: for (j = 0; j <| templist |; j + +) do

20: for (k = sindex; k < eindex; k + +) do

21: if j <| AV | then

22: append M [k] to M

23: end if

24: append templist[k] to M [k]

25: end for

26: sindex← eindex

27: end for

28: else

29: index = 0

30: for (l = 0; l <| templist |; l + +) do

31: M [index]← templist[l]

32: end for

33: end if

34: end while

35: for (each sub list n in M) do

36: addnode(n)

37: end for

38: end procedure

www.manaraa.com

27

the conjunction in a single node and insert an edge from this node to the node v. Consider

AV = 〈〈1, 1〉, 〈2, 1〉〉 and v = 〈3, 1〉, there exists a conjunctive dependency where, thread-loop

pair 〈3, 1〉 is dependent on both the thread loop pairs in AV . This is indicated by creating

a node with label 〈〈1, 1〉, 〈2, 1〉〉 and a node with label 〈3, 1〉 and creating an edge from the

former to the latter as indicated in Figure.3.2. Consider AV = 〈〈3, 1〉, 〈3, 2〉〉 and v = 〈2, 1〉,

there exists a disjunctive dependency where, thread-loop pair 〈2, 1〉 depends on either one of

the thread-loop pairs in AV . Such an inter-thread loop dependency is updated in the following

manner: a node with label is added 〈3, 1〉, a node with label 〈3, 2〉 is added, edges from each

of these nodes are added to a node with label 〈2, 1〉. This is indicated in the dependency graph

given by Figure.3.3. This kind of dependency occurs in nested loops. When a thread-loop

pair is dependent on one of the loops in a set of nested loops, it is not feasible to isolate the

exact source of inter-thread loop dependency. In this case, we perform a safe-approximation by

storing this as a disjunctive dependency. We insert a node for each loop in the set of nested

loops and an edge from each of these nodes to the node representing the dependent thread-loop

pair.

We describe our algorithm for constructing and later updating the dependency graph in

Algorithm.1. The procedure takes the parameters v, AV , and G as inputs, we begin with an

empty graph. The following are the parameters used by this procedure:

• v- a tuple of form 〈thread identifier, loop identifier〉 representing the destination node.

• AV - a sorted list of tuples 〈threadidentifier, loopidentifier〉 representing the inter-thread

loop dependencies that could be causing possible count violations in the execution of the

loop in the thread represented by v. The list is sorted by threadidentifier. We get AV

from testing.

• G- dependency graph.

• M - a list of list of tuples t. t are of the form 〈threadidentifer, loopidentifier〉. At the

end of the computation, each sub list of tuples will be stored as a node.

• templist- a temporary list of tuples of form t for computation purposes.

www.manaraa.com

28

2, 1 3, 1 4, 1

1, 1

2, 1 3, 2 4, 1

Figure 3.4 Example for illustrating the construction of a dependency graph

Our algorithm to update the inter-thread loop dependencies involves the following steps:

• The node v is added to G.

• The following actions are performed in a loop until all the tuples in AV are processed.

– Let thread = threadidentifier of first thread-loop pair in AV . The first element in

AV is removed and added to temporary list templist.

– Every thread-loop pair in AV , that has the same threadidentifier as thread is

added to templist.

– if M is non-empty: if the length of templist is len, len− 1 copies of M are created

and appended to M , while a thread-loop pair of templist is added to each newly

created copy of M .

– if M is empty: for each thread-loop pair in the templist, a new sub list is created

in M , and the thread-loop pair in templist is added to the newly created sub list.

• For each sublist of thread-loop pairs in M , a node is added and an edge is added from

the newly added node to the node v in the graph G.

Consider, the destination node v to be 〈1, 1〉. Let AV = 〈〈2, 2〉, 〈3, 1〉, 〈3, 2〉, 〈4, 1〉〉. The

construction or updation of dependency graph involves the following steps: Our procedure adds

the destination node v to the dependency graph.

iteration 1: templist is cleared, thread = 2 (threadidentifier of first element in AV: 〈2, 2〉).

〈2, 2〉 is removed from AV and pushed into templist. No further updation to templist is done,

since no other thread loop pair in AV has the same threadidentifier. M is empty, therefore,

a new sub list in M is created, 〈2, 2〉 is pushed into the newly created sub list.

www.manaraa.com

29

iteration 2: templist is cleared, thread = 3, corresponding to the first element in AV : 〈3, 1〉,

〈3, 1〉 is removed from AV and pushed into templist. There exists a thread-loop pair 〈3, 2〉,

with the same threadidentifier as thread. Hence, 〈3, 2〉 is pushed into templist. Now, M is

non-empty, already containing a sub-list with the thread-loop pair 2, 1. There exist 2 elements

in the templist, corresponding to this, a copy of M of created and it is appended to M . M now

has, two sub lists, each with the element 〈2, 1〉. Each thread-loop pair in templist is appended

to each copy of the original version of M. M = 〈〈〈2, 1〉, 〈3, 1〉〉, 〈〈2, 1〉, 〈3, 2〉〉〉.

iteration 3: templist is cleared, thread = 4, corresponding to the first thread-loop pair

in AV : 〈4, 1〉. 〈4, 1〉 is removed from AV and added to templist. No further updation is

done to templist since, there exists no more thread-loop pairs with the same threadidentifer.

M = 〈〈〈2, 1〉, 〈3, 1〉〉, 〈〈2, 1〉, 〈3, 2〉〉〉. templist simply contains one thread-loop pair, this thread-

loop pair is appended to each sub list inM . M is now 〈〈〈2, 1〉, 〈3, 1〉, 〈4, 1〉〉, 〈〈2, 1〉, 〈3, 2〉, 〈4, 1〉〉〉.

There are no more thread-loop pairs in AV to be processed. A node is added for every sub

list in M . Edges are added from the newly added nodes to the destination node 〈1, 1〉. This

results in a dependency graph as shown in Figure.3.4.

3.2.2 Detecting non-termination

The dependency graph representation described in the previous sections, allows us to de-

tect non-termination in a multi-threaded program through cycle detection in the program’s

dependency graph. From Equation.3.1, we know that there exists a non-terminating execution

sequence in a concurrent program, if there exist two thread-loop pairs, such that there exist

symmetry in the transitive closures over their inter-thread loop dependency relations. That

is, there exist thread-loop pairs 〈i, j〉, 〈i′, j′〉, such that the 〈i, j〉 7→∗ 〈i′, j′〉 and vice versa.

Detecting such symmetry in transitive closure directly translates to cycle detection in depen-

dency graph, since an edge e from node(thread-loop pair(s)) v to v′ in the graph represents an

inter thread loop dependency from v to v′ causing a count violation in v′. We now present our

definition of cycle, which is slightly different from looking for traditional cycle in graphs.

www.manaraa.com

30

3, 1

1, 1 2, 1

Figure 3.5 Dependency graph with a simple cycle

Definition 3.2.3. A path in a graph G is a finite or infinite sequence of edges that connects

a sequence of nodes in G. We say a graph G, has a cycle when one of the following conditions

are met:

• Simple cycles: There exists a path from a node labelled 〈i, j〉, such that the node labelled

〈i, j〉 is revisited. In this path, there can exist no intermediate node with a label having

multiple thread-loop pairs.

• Complex cycles: There exists a path starting from a node labelled with multiple thread-

loop pairs, 〈〈i1, j1〉, 〈i2, j2〉...〈il, jl〉〉, such that, a node labelled im, jm is visited ∀m ∈ [1, l].

Figure.3.5 shows a dependency graph with a simple cycle given by: 〈1, 1〉, 〈2, 1〉, 〈3, 1〉. Fig-

ure.3.6 shows a dependency graph with a complex cycle given by: 〈〈1, 1〉, 〈3, 1〉〉, 〈2, 1〉, 〈3, 1〉,

〈1, 1〉. This is because, there exists a path from 〈〈1, 1〉, 〈3, 1〉〉 in which each of the thread-

loop pairs 〈1, 1〉 and 〈3, 1〉 pairs are individually visited. A complex cycle should be viewed

as a logical cycle in the inter-thread loop dependencies between thread loop pairs as opposed

to a physical cycle in the dependency graph. In Figure.3.6, we find the following cyclic inter

thread loop dependency, thread-loop pair 〈2, 1〉 is dependent on thead-loop pairs 〈〈1, 1〉, 〈3, 1〉〉,

while thread-loop pair 〈3, 1〉 is dependent on thread-loop pair 〈2, 1〉 and in turn, thread-loop pair

〈1, 1〉 is dependent on thread-loop pair 〈3, 1〉. Hence, we say that there exists a non-terminating

execution sequence given by this complex cycle.

Algorithm.2 describes our Cycle(G) used to detect the occurrence of non-terminating ex-

ecution sequences by cycle detection in dependency graph. The algorithm has two sections.

The first sections detects simple cycles as described in Algorithm.3 , for every node v in the

graph G, it executes a call to SimpleCycle(v, recstack). Here, recstack represents the re-

cursion stack. An outline of SimpleCycle procedure is available in Algorithm.3. This is a

www.manaraa.com

31

2, 1 3, 1

1, 1

3, 1

2, 1

1, 1 3, 1

Figure 3.6 Dependency graph with a complex cycle

Algorithm 2 Outline of the Algorithm for detecting non-termination

1: procedure Cycle(G)

2: for (every node v in G) do

3: if SimpleCycle(v, recstack) then

4: return true

5: end if

6: end for

7: for (every node v with multiple tuples in label) do

8: mark all nodes as not visited

9: DFS(v)

10: if (Each tuple in label of v occurs in list) then

11: return true

12: end if

13: end for

14: end procedure

Algorithm 3 Outline of the Algorithm for detecting simple cycles

1: procedure SimpleCycle(v, recstack)

2: if node v is not visited then

3: mark v as visited

4: push v onto recstack

5: end if

6: for (every adj node v′ of v) do

7: if (v′ is not visited & SimpleCycle(v′, recstack)) then

8: return true

9: else if (v′ is in recstack) then

10: return true

11: end if

12: end for

13: pop recstack

14: return false

15: end procedure

www.manaraa.com

32

Algorithm 4 Outline of the DFS Algorithm for detecting complex cycles

1: procedure DFS(v)

2: mark v as visited

3: for (every tuple i in the label of v) do

4: list← i

5: end for

6: for (every adjacent node v′ of v) do

7: if (v′ is not visited) then

8: DFS(v′)

9: end if

10: end for

11: end procedure

regular DFS based cycle detection. DFS traversal is performed over the graph G to create the

equivalent DFS tree or forest, a cycle is detected by detecting a back edge. For each node v in a

graph, the node is marked visited and pushed onto the recursion stack. For each adjacent node

v′ of v, SimpleCycle is recursively called. When an node v′ that is present in the recursion

stack is revisited, a cycle or back edge is detected.

The second section detects complex cycles as described in Algorithm.4, for every node v with

multiple tuples in the label, the procedure DFS(v) is called. For every node v with multiple

labels, a depth first traversal is done. Each node visited during this traversal is added to a

global data structure list. Cycle(G) iterates through this list to check if all the tuples rep-

resenting the node v are revisited individually. If a cycle is found, the procedure returns true

and false otherwise.

For the dependency graph in Figure.3.5, our Cycle(G) detects the simple cycle through the

DFS based cycle check discussed in SimpleCycle. Let us consider, the dependency graph

in Figure.3.6. There exists a complex cycle given by 〈〈1, 1〉, 〈3, 1〉〉, 〈2, 1〉, 〈3, 1〉, 〈1, 1〉. There

exists a path from 〈〈1, 1〉, 〈3, 1〉〉 in which each of the thread-loop pairs 〈1, 1〉 and 〈3, 1〉 pairs

are individually visited. DFS performs a depth first traversal staring from node 〈〈1, 1〉, 〈3, 1〉〉

and pushes the label of each node visited onto a list. This list is later explored to identify the

complex cycle and Cycle(G) returns true.

www.manaraa.com

33

Algorithm 5 Outline of the testing algorithm for detecting non-termination

1: procedure Explore(J , B, k)

2: if k ≥ n then

3: return false

4: else

5: if J = ∅ then

6: J ← B

7: k ← k + 1

8: end if

9: i← threadid of j0 | j0 is first element of J

10: j ← loopid of j0
11: m← basecount of j0
12: remove j0
13: C ← all k − 1 combinations of x ∈ {y | y ∈ [1, n] ∧ y 6= i} appended by i

14: insert assertion in j-th loop of i-th thread: assert(cntij ≤ m)

15: for (each ci ∈ C) do

16: AV ← testing(ci)

17: if (AV 6= ∅) then

18: ConstructGraph (〈i, j〉, G,AV)

19: if Cycle(G) then

20: return true

21: end if

22: end if

23: end for

24: Explore (J , B, k)

25: end if

26: end procedure

www.manaraa.com

34

3.3 Non-termination by testing

Our method for determining non-termination in multi-threaded programs, involves deter-

mining the base count, followed by calling the EXPLORE procedure that performs testing over

increasing combinations of threads recursively. The first step is to pre-instrument the program

of interest. For each loop in each thread, count variables (cntij for the j-th loop in the i-th

thread) are inserted in such a way, that they are incremented each time a loop in a thread

unfolds. Recall, that each loop in each thread is associated with a base count that indicates

the number of times, the loop executes on its own, without any interferences. The first step of

our approach involves determining the base count.

3.3.1 Determining base count

We execute each thread without any interferences to determine base count, since we as-

sume that each thread terminates, when executed on its own. After each thread is exe-

cuted, their thread identifiers, loop identifiers and their base count are updated in the list

B, which we call the base list. Consider, a thread having thread identifier 4 with 3 loops is

executed sequentially. Let, m41, m42, m43 be the base count that we determined. The tuples

〈4, 1,m41〉, 〈4, 2,m42〉, 〈4, 3,m43〉 are appended to B.

3.3.2 Testing for non-termination by EXPLORE

The EXPLORE procedure tests different combinations of threads recursively. It com-

mences testing by considering all combinations of 2 threads to discover inter-thread loop depen-

dencies that require a single thread-loop pair to cause a count violation in another thread-loop

pair and for each round of recursion, it increases the number of threads tested by 1, to incre-

mentally discover dependencies. Let us consider, our input program to have n threads, with

l being the maximum number of loops in any thread. Once the base count is determined, the

EXPLORE procedure is called. Algorithm.5 shows an outline of our EXPLORE procedure,

that performs testing for detecting non-termination. The procedure takes B, J , and k as inputs.

www.manaraa.com

35

• B- base list contains a list of all loops in the program, along with their thread identifier and

base count. It is a list of tuples of the form 〈threadidentifier, loopidentifier, basecount〉.

It represents a master list of all the jobs (thread-loop pairs) to be explored.

• J- job list contains current working list of pending jobs or thread-loop pairs. It is also

a list of tuples of the form 〈threadidentifier, loopidentifier, basecount〉 The procedure

begins with J = ∅ and populates it from the base list B.

• k- the number of threads selected for current iteration of testing.

We start by loading the list of jobs into J from B and by setting k = 2. For each entry

in the J , we perform two actions. First action is to instrument the program with appropriate

assertions. Consider, the current job in J to be 〈i, j,mij〉. After the last statement of the j-th

loop in the i-th thread, we insert an assertion of the form assert(cntij < mij) , where the

cntij represents the count variable instrumented and mij represents the base count value. The

second action is to create a combination list C. The C contains a list of list of threads to be

selected for the current testing iteration. This list is populated by doing the following:

• We compute, all possible k−1 combinations of x ∈ T , where T := {x | x ∈ [1, n]∧x 6= i}.

• Each k − 1 combination of threads is appended by i.

• Each k combination of threads is now pushed into C.

Once the C is populated, for each entry in the list, those specific threads are selected for

testing. Testing returns AV . If an assertion violation on the cntij is observed, AV contains a list

of count variables that appeared in the execution sequence leading to the violation. AV is a list

of 〈threadidentifier, loopidentifier, basecount〉, where, threadidentifier 6= i. If no assertion

violation was encountered, the AV contains NULL. If an assertion violation is encountered,

the dependency graph G is updated, and the graph is checked for cycles by CYCLE(G). If

a cycle is found, the procedure terminates, announcing the likelihood of non-termination, the

dependency graph is displayed.

In the event of not finding a cycle, the method proceeds with testing until all the combina-

tions in C are exhausted. If we have performed testing for all jobs in J , we repeat instrumenting

www.manaraa.com

36

assertions, computing C, testing and cycle checks until we find a non-termination or exhaust

all jobs in J . Once we have exhausted all the pending jobs for the current combination, but we

have still not detected non-termination, we increment k and retry our testing procedure. This

helps us to explore more interference scenarios in execution sequences introduced by considering

more number of threads at the same time.

Let us consider the example in Figure.3.1. We now illustrate how our method can be used

to discover the non-termination sequence that can occur, when in each thread, before the loop

conditional is checked, if an interference modifies the loop controlling parameter.

• We begin by determining the base count, by executing each thread in a completely sequen-

tial fashion. If the values of x, y and z are initialized to 0, we find B = 〈〈1, 1, 5〉, 〈2, 1, 5〉, 〈3, 1, 5〉〉.

• We call the procedure EXPLORE to begin testing. J is initialized to B, k is initialized

to 2. The first element in J , j0 is 〈1, 1, 5〉.

• After the last statement of the first loop in the first thread, an assertion of the form

assert(cnt11 ≤ 5) is inserted. Combinations of size k are computed. C = 〈〈1, 2〉, 〈1, 3〉〉.

j0 is removed from the J .

• For the first element in C, 〈1, 2〉, testing is done after Thread 1 and Thread 2 are selected.

No assertion violation is found.

• For the next element in C, 〈1, 3〉, testing after appropriate thread selection reveals asser-

tion violation on cnt11. In the execution sequence leading to the assertion violation, we

find cnt31 corresponding to the first loop in Thread 3.

• We update graph G with a node 〈1, 1〉, a node 〈3, 1〉 and finally an edge from 〈3, 1〉 to

〈1, 1〉. On checking for cycles, the CYCLE(G) returns false.

• We have exhausted all the thread combinations in C. For the first element in J , 〈2, 1, 5〉,

we perform instrumentation in Loop 1 of Thread 2. We populate the C with 〈〈2, 1〉, 〈2, 3〉〉.

• For the combination 〈2, 1〉, testing yields an assertion violation on cnt21 with cnt11 in the

program trace.

www.manaraa.com

37

• Corresponding to the assertion violation, we update graph G with a node 〈2, 1〉 and an

edge from 〈1, 1〉 to 〈2, 1〉(〈1, 1〉 is duplicate and hence not inserted). Our non-termination

check returns false.

• For the combination 〈2, 3〉, testing does not yield an assertion violation. We have now

exhausted all combinations in C.

• For the next element in J , 〈3, 1, 5〉, we insert an appropriate assertion after the last

statement of Loop 1 in Thread 3. We compute thread combinations, C = 〈〈3, 1〉, 〈3, 2〉〉.

• Corresponding to 〈3, 1〉, appropriate threads are selected, testing yields no assertion vio-

lation.

• Corresponding to 〈3, 2〉, appropriate threads are selected, testing gives an assertion vio-

lation on cnt31 with cnt21 in the program trace. We update G, with an edge from 〈2, 1〉

to 〈3, 1〉. The termination check CYCLE(G) returns true upon find the simple cycle

between 〈1, 1〉, 〈2, 1〉 and 〈3, 1〉.

• Our program terminates indicating the presence of a possible non-terminating execution

sequence and displays the dependency graph as shown in Figure.3.5.

Our novel incremental testing approach gives us several significant advantages. If, we begin

testing by considering all n threads together, isolating the specific inter-thread loop dependency

that caused the count violation will be a laborious task. This would also complicate the cycle

detection in our dependency graph. Further, if there exists an non-terminating scenario due

to inter-thread loop dependencies between just two threads, we would be exploring bulkier

scenarios involving more number of threads which is of little relevance. In this case, our

technique with incremental testing would also lead to faster discovery of non-termination as

compared to selecting all threads for testing.

Hence, we presented a testing based technique to detect the presence of unbounded execu-

tion paths due to unwanted race conditions. Our technique leverages the ability of testing based

approaches to quickly verify assertional properties. We have developed an efficient method that

expresses non-termination in multithreaded programs in assertional properties. Finally, we infer

www.manaraa.com

38

the likelihood of non-terminating program paths from the violation of these carefully selected

assertions over bounded execution paths.

3.4 Tool Description

We present an overview of our language independent, generic, testing based framework for

detecting non-termination. Our tool is implemented using a combination of C++ and Python.

Our tool involves recursive guided testing, where we systematically determine inter-thread loop

dependencies by considering all possible combinations of k = 2 threads to begin with, and for

each new iteration, we consider k + 1 combinations of threads for testing. This is done either,

till all possible combinations are tested for all k ≤ n, with n being the number of threads in

the program, or non-termination is observed.

3.4.1 Tool overview

Figure.3.7 illustrates a simple block diagram of our tool. The inputs to our tool are the

pre-instrumented multi-threaded program to be tested and the number of threads in the test

program. The pre-instrumentation involves the following: For each loop j in each thread i, a

cntij variable is inserted. In the j-th loop of the i-th thread, a statement cntij ++ is included as

the first statement, such that, the count variable is incremented every time the loop is executed.

Additional pre-instrumentation is done, such that, every time a cntij variable is incremented,

it is written to a temporary file. This temporary file is used for computation purposes by our

tool. A code-snippet from one of the pre-instrumented test programs is shown in Figure.3.8,

where, the lines of code 10, 12, 18 - 21 were inserted as a part of pre-instrumentation.

1. The base count evaluator determines the base count for each thread-loop pair in the test

program.

2. For each thread-loop pair, i, j, the instrumentation tool inserts an appropriate assertion

of the form assert(cntij ≤ basecount).

3. Corresponding to the thread identifier i of the current thread-loop pair being tested, a

combination generator generates all possible k combinations of i with the other threads

www.manaraa.com

39

Figure 3.7 Architecture diagram of our tool

in the program. This combination of k threads, corresponds to the set of threads that

need to be selected for the current phase of testing.

4. The instrumentation tool and the combination generator pass the current thread-loop

pair, test program carefully instrumented with assertions and the current combination

to the thread selector. The thread selector selects the threads indicated in the current

combination for testing.

5. Following the instrumentation and thread selection, the test program is tested. Our

algorithm uses simple random testing for verifying the inserted assertions.

6. If an assertion violation is encountered, the dependency graph synthesizer records this

inter-thread loop dependency. Also, a non-termination check is performed, which checks

for cycles in the dependency graph.

7. If the non-term check returns true, our tool terminates, presenting the scenario leading

to non-termination.

8. This procedure is repeated till all k combinations of all thread-loop pairs are tested for all

values of k <= n (n- number of threads in test program) or non-termination is detected.

www.manaraa.com

40

Figure 3.8 A snippet of pre-instrumented code

www.manaraa.com

41

3.4.2 Tool components

• Base count evaluator:

The base count evaluator, takes the pre-instrumented multi-threaded program as input.

For each thread-loop pair in the test program, it determines the base count. This is

done by executing each thread on its own, without interferences from other threads. As

described in the previous sections, the base count evaluation returns a base list B with

thread-loop pairs and their respective base count values.

• Instrumentation tool:

Given a thread-loop pair i, j, the instrumentation tool parses the input program. Follow-

ing the last statement of the j-th loop in the i-th thread, it inserts an assertion of type

assert(cntij ≤ basecount).

• Combination generator:

Given a thread-loop pair i, j, the combination generator generates a combination list C.

This list is populated by synthesizing k- sized combinations of i with j ∈ T ∧ j 6= i (T is

the set of all threads in the test program). This combination corresponds to the k threads

that will considered for testing.

• Thread selector:

Given a thread combination of size k, the thread selector parses through the input code. A

new program is created from the instrumented program outputted by the instrumentation

tool. The thread selector ensures, that the new program created, only consists of the

threads selected for the current phase of testing. This instrumented, thread selected

program is now ready for testing.

• Testing :

Our tool uses random testing for detecting inter-thread loop dependencies modeled as

assertions. To explore different possible program behavior due to different input valua-

tions, we use a random input generator while determining the base count. Once base count

is determined, we reuse the input valuations for recursive testing. To explore different

www.manaraa.com

42

possible program behavior due to different possible schedules, we repeatedly execute the

program till an assertion violation is encountered or an upper bound for the number of

execution is reached. If the upper bound is reached, we conclude that no inter-thread

loop dependency was found and proceed with the next combination for testing. We have

conducted our experiments with the upper bound on the number of executions to be 200.

It is important to note, that an upper bound for number of executions of 200, does not

imply that 200 distinct schedules are explored, since we rely entirely on the underlying

compiler to generate schedules. Hence, this does not guarantee, that 200 distinct pro-

gram behaviors were explored. If our method concludes, that no non-termination could

be found, we recommend retrying testing by increasing this value or by increasing the

rangle of the random input generator. This way, more interference scenarios or program

behaviors can be explored as compared to the previous case. Previously, we attempted

to use CONCREST Farzan et al. (2013), which is a concolic testing technique for multi-

threaded programs. In general, we observed that CONCREST had scalability issues. We

provide a complete discussion on our experience with concolic testing in Chapter 4.

• Dependency graph synthesizer:

This is an implementation of the ConstructGraph procedure, which is central to our

tool. As discussed earlier, the dependency graph is the data structure, that is used to

encode the observed inter-thread loop dependencies causing count violations. When an

assertion violation is discovered from testing, a dependency graph is constructed by adding

nodes and edges corresponding to the inter-thread loop dependency involved. Before the

updation of the dependency, a duplication check is run to ensure that only distinct inter-

thread loop dependencies are recorded. This facilitates an efficient non-termination check.

• Non-term check:

This is singularly, the most important component of our tool. Each time the dependency

graph is updated, the Non-term check is run. This component is an implementation of

Cycle and uses SimpleCycle to check for simple cycles, and DFS to detect complex

cycles as defined in Definition.3.2.3. These procedures are modified implementations of

www.manaraa.com

43

a DFS based cycle detection. If either one of the cycles are detected, the non-term check

returns true indicating the likelihood of a non-terminating execution sequence in the

program tested.

• Results display:

Our tool terminates giving one of the following outputs:

– Reports likelihood of non-termination, displays the adjacency list of the dependency

graph and the scenario leading to non-termination. The scenario consists of a list

of thread-loop pairs, which could lead to possible non-termination. In other words,

this is a list of thread-loop pairs which form a cycle in our dependency graph.

– Reports that no non-termination was found and displays the adjacency list of the

dependency graph.

– Time-out (7200s / 2 hrs): Reports that no non-termination was found and displays

the adjacency list of the dependency graph.

www.manaraa.com

44

CHAPTER 4. RESULTS

We now present an experimental evaluation of our approach to detect non-termination in

multi-threaded programs. For the performance evaluation and scalability study of our tech-

nique, there are no existing benchmarks available. Hence, we use a systematic enumeration

of different possible scenarios or execution patterns that could lead to non-termination in

multi-threaded programs as benchmarks for the validation of our approach’s correctness and

feasibility. We present the results of this evaluation in Table.4.1. In Sections 4.1 to 4.3, we

describe the enumeration of non-terminating patterns in multi-threaded programs, we present

a discussion on representative example patterns from Table.4.1.

Pattern refers to execution patterns, that could lead to non-termination. Each pattern

consists of thread-loop pairs as its elements. The j-th loop in the i-th thread is represented by

〈i, j〉. Similar to the dependency graph, an edge from an element 〈i, j〉 to 〈i′, j′〉 represents, that

there exists an inter-thread loop dependency from 〈i, j〉 to 〈i′, j′〉, causing a count violation in

〈i′, j′〉. Now, if the edge has a label 〈i′′, j′′〉, there exists an inter-thread loop dependency from

〈i, j〉, 〈i′′, j′′〉, to 〈i, j〉 causing a count violation in 〈i, j〉. n refers to the number of threads

in the test code, Dependency Graph shows the resulting dependency graph. t(s) gives the

tool’s overall execution time, R gives the result outputted by our tool (’T’ for non-termination

and ’F’ otherwise).

Table 4.1 Results of experimental evaluation

Pattern n Dependency graph t(s) R

1

1,1 2,1

2

1, 1 2, 1

2.3 T

www.manaraa.com

45

Table 4.1 (Continued)

Pattern n Dependency graph t(s) R

2

1,1 2,1

3,1
3

3, 1

1, 1 2, 1
100.6 T

3

1,1 2,1

3,1
3

2, 1 3, 1

1, 1

3, 1

2, 1

1, 1 2, 1

150.3 F

4

1,1 2,1

3,1

1,2 2,2

3,2
3

1, 1

3, 1

1, 2

3, 2

2, 2

2, 1

342.4 T

5

1,1 2,1

3,1

1,2 2,2

3,2
3

1, 1

1, 2

3, 1

3, 2

2, 1

2, 2

2, 1 3, 1

2, 2 3, 1

2, 1 3, 2

2, 2 3, 2

1, 2 3, 2

1, 1 3, 2

1, 2 3, 1

1, 1 3, 1

526.9 F

6

1,1 2,1

3,1

1,2 2,2

3,2
3

1, 1

3, 1

2, 2

3, 2

2, 1

1, 2

387.1 T

www.manaraa.com

46

Table 4.1 (Continued)

Pattern n Dependency graph t(s) R

7

1,1 1,2

2,1 2,2

3,1 3,2
3

1, 1

3, 1

1, 2

3, 2

2, 2

2, 1

866.5 T

8

1,1 2,1

3,1

3, 1

3

2, 1 3, 1

1, 1

3, 1

2, 1

1, 1 3, 1

119.4 T

9

1,1 2,1

3,1

2, 1,3, 1

3

2, 1 3, 1

1, 1

3, 1

2, 1

1, 1 3, 1

174.8 T

10

1,1 2,1

3,1

1,2 2,2

3,2

3, 2

3

1, 1

1, 2

3, 1

3, 2

2, 1

2, 2

2, 1 3, 1

2, 2 3, 1

2, 1 3, 2

2, 2 3, 2

1, 2 3, 1

1, 1 3, 1

949.3 T

11

1,1 2,1

2

1, 1 2, 1

3.9 T

www.manaraa.com

47

1: while x ≤ 5 do

2: Do-something

3: x+ +

4: y −−
5: end while

1: while y ≤ 5 do

2: Do-something

3: y + +

4: x−−
5: end while

(a) Thread 1 (b) Thread 2

Figure 4.1 Case study-1: Loops with inter-thread loop dependencies

4.1 Loops with inter-thread loop dependencies

Non-termination occurring due to circular inter-thread loop dependencies between simple

loops in threads, leading to count violations falls under this category. Entries 1, 2, 3, 11 in

Table.4.1 are examples of this category.

4.1.1 Case study-1

Let us consider the pattern described in the 1-st entry in Table.4.1. This pattern describes

the inter-thread loop dependencies in Figure.4.1. There are two threads, with inter-thread loop

dependency from 〈1, 1〉 to 〈2, 1〉, causing a count violation in 〈2, 1〉 and vice versa. Hence, there

exists a non-terminating execution path.

Following the evaluation of base count, when Thread 1, Thread 2 are executed with an

appropriate assertion in 〈1, 1〉, an assertion violation occurs, with cnt21 in the program trace.

The dependency graph is updated accordingly. When Thread 2, Thread 1 are executed with

an appropriate assertion in 〈2, 1〉, an assertion violation occurs, with cnt12 in the the program

trace. Following the updation of dependency graph, the non-termination check reveals a simple

cycle as indicated. Test program for entry 11 in Table.4.1 is similar to the program described

by Figure.4.1, except that we consider more complex loop constraints. In this case, our tool

performs an identical sequence of computations to detect the likelihood of non-termination in

2.3s.

www.manaraa.com

48

1: while x ≤ 5 do

2: Do-something

3: x+ +

4: end while

1: while y ≤ 5 do

2: Do-something

3: y + +

4: z −−
5: end while

1: while z ≤ 5 do

2: Do-something

3: z + +

4: x−−
5: end while

(a) Thread 1 (b) Thread 2 (c) Thread 3

Figure 4.2 Case study-2: Loops with inter-thread loop dependencies

4.1.2 Case study-2

Consider the example Figure.4.2. This corresponds to the 3-rd entry in the Table.4.1. The

example has three threads, with an inter-thread loop dependency from 〈2, 1〉 to 〈3, 1〉 causing

a count violation on 〈3, 1〉 and an inter-thread loop dependency from 〈3, 1〉 to 〈1, 1〉 causing a

count violation on 〈1, 1〉. There is no sub-group of thread-loop pairs with a circular or mutual

inter-thread loop dependency.

k = 2: Following base count evaluation, EXPLORE executes Thread 1, Thread 2 with an

appropriate assertion on 〈1, 1〉. No assertion violation is observed. Thread 1, Thread 3 are

executed with an appropriate assertion on 〈1, 1〉. An assertion violation occurs with cnt31 in

the program trace. The graph is updated accordingly. EXPLORE executes Thread 2, Thread

1, with an assertion on 〈2, 1〉. No assertion violation is found. The observation is the same

when Thread 2, Thread 3 are executed with an assertion on 〈2, 1〉. Thread 3, Thread 1 are

executed with an appropriate assertion on 〈3, 1〉. No assertion violation is observed. Thread 3,

Thread 2 are executed with an appropriate assertion on 〈3, 1〉. Assertion violation with cnt21

in the program trace was observed. Since no non-termination was found yet, the next iteration

proceeds by considering all the threads for testing.

k = 3: Considering all three threads, with an assertion on 〈1, 1〉, yields an assertion violation

with both cnt21, cnt31 in the program trace. This is because, all three threads are selected for

testing. The dependency graph is appropriately updated. However, considering all three threads

with an assertion on 〈2, 1〉 yields no assertion violation.

Lastly, similar to the first case, executing all three threads with an assertion on 〈3, 1〉,

yields an assertion violation with both cnt11, cnt21 in the program trace. The dependency

www.manaraa.com

49

1: while x ≤ 5 do

2: Do-something

3: x+ +

4: y −−
5: while a ≤ 5 do

6: a+ +

7: b−−
8: end while

9: end while

1: while y ≤ 5 do

2: Do-something

3: y + +

4: z −−
5: while b ≤ 5 do

6: b+ +

7: c−−
8: end while

9: end while

1: while z ≤ 5 do

2: Do-something

3: z + +

4: x−−
5: while c ≤ 5 do

6: c+ +

7: a−−
8: end while

9: end while

(a) Thread 1 (b) Thread 2 (c) Thread 3

Figure 4.3 Case study-3: Nested loops with inter-thread loop dependencies

graph is updated. A non-termination check does not reveal a simple or complex cycle. Hence,

no non-termination is reported.

4.2 Nested loops with inter-thread loop dependencies

Non-termination is caused due to inter-thread loop dependencies in nested loops. The

dependencies can be between inner loops or outer loops or an inner loop and an outer loop.

Examples include 4, 5, 6, 7 in Table.4.1.

4.2.1 Case study-3

Consider, the example in Figure.4.3. This corresponds to 4-th entry in the Table.4.1. The

example has three threads, with circular inter-thread loop dependencies between all the three

outer loops. There also exists a circular dependency between all the three inner loops. Hence,

there exist two separate scenarios that may lead to non-termination.

k = 2, Thread 1: An assertion is placed on 〈1, 1〉. Testing Thread 1, Thread 2 yields no

assertion violation. Testing Thread 1, Thread 3 yields an assertion violation with cnt31, cnt32

(both count variables appear because of the inherent dependency between the outer loop and

inner loop in nested loops). Updation of graph is done. An assertion is placed on 〈1, 2〉. Testing

Thread 1, Thread 2 yields no assertion violation. Testing Thread 1, Thread 3 gives an assertion

violation with cnt31, cnt32. Updation of graph is done.

www.manaraa.com

50

1: while x ≤ 5 do

2: Do-something

3: x+ +

4: while a ≤ 5 do

5: a+ +

6: b−−
7: end while

8: end while

1: while y ≤ 5 do

2: Do-something

3: y + +

4: z −−
5: while b ≤ 5 do

6: b+ +

7: c−−
8: end while

9: end while

1: while z ≤ 5 do

2: Do-something

3: z + +

4: x−−
5: while c ≤ 5 do

6: c+ +

7: end while

8: end while

(a) Thread 1 (b) Thread 2 (c) Thread 3

Figure 4.4 Case study-4: Nested loops with inter-thread loop dependencies

k = 2, Thread 2: An assertion is placed on 〈2, 1〉. Selecting Thread 1, Thread 2 for testing,

yields an assertion with cnt11, cnt12 in the program trace. Updation of graph is done. Selecting

Thread 2, Thread 3 for testing, yields no assertion violation. An assertion is placed on 〈2, 2〉.

Selecting Thread 1, Thread 2 for testing, yields an assertion with cnt11, cnt12 in the program

trace. Updation of graph is done. Selecting Thread 2, Thread 3 for testing, yields no assertion

violation.

k = 2, Thread 3: An assertion is placed on 〈3, 1〉. Selecting Thread 1, Thread 3 for testing,

yields no assertion violation. Selecting Thread 2, Thread 3 for testing, gives an assertion

violation with cnt21, cnt22 in the program trace. Updation of graph is done. At this point, a

non-termination check reveals a simple cycle between the nodes 〈1, 1〉, 〈2, 1〉, 〈3, 1〉 as indicated

in the dependency graph. Hence, non-termination is reported.

4.2.2 Case study-4

Consider, the example Figure.4.4. This corresponds to entry 6 in the Table.4.1. In this

example, we have three threads, each with a nested loop. Upon careful observation, we find,

there exists no sub group of thread-loop pairs that have a circular inter-thread loop dependency

amongst them.

k = 2, Thread 1: An assertion is placed on 〈1, 1〉. Testing Thread 1, Thread 2 yields no

assertion violation. Selecting Thread 1, Thread 3 for testing, gives an assertion violation with

cnt31, cnt32 in the program trace. Updation of graph is done. An assertion is placed on 〈1, 2〉.

www.manaraa.com

51

Selecting Thread 1, Thread 2 yields no assertion violation. Selecting Thread 1, Thread 3 for

testing also yields no assertion violation.

k = 2, Thread 2: An assertion is placed on 〈2, 1〉. Testing Thread 1, Thread 2 yields

no assertion violation. Selecting Thread 2, Thread 3, also yields no assertion violation. An

assertion is now placed on 〈2, 2〉. Testing Thread 1, Thread 2 gives an assertion violation with

cnt11, cnt12 in the program trace. Updation of graph is done. Selecting Thread 2, Thread 3

for testing yields no assertion violation.

k = 2, Thread 3: An assertion is placed on 〈3, 1〉. Selecting Thread 1, Thread 3 yields no

assertion violaton. Selection Thread 2, Thread 3, gives an assertion violation with cnt21, cnt22

in the program trace. Updation of graph is done. At this point, a nontermination check returns

true because of the simple cycle between 〈1, 1〉, 〈3, 1〉, 〈2, 2〉. This is a false positive, since in

reality, recreating such an execution sequence does not lead to a non-termination.

When there exists an inter-thread loop dependency between a loop x in a thread, from a

loop in a set of nested loops y, z in a different thread, causing a count violation in x, it is not

feasible to deduce if the count violation occurs due to the inner loop or the outer loop. This

is because, unless the inner loop is inside a conditional statement, the execution of the outer

loop will inevitably cause the execution of the inner loop.

4.2.3 Case study-5

Consider, the example Figure.4.5. This corresponds to the entry 7 in the Table.4.1. The

sample program consists of three threads, each having nested loops in them. Upon careful

observation, we find, that there exist circular inter-thread loop dependencies in the sub groups

〈1, 1〉, 〈2, 2〉, 〈3, 1〉 and 〈1, 2〉, 〈2, 1〉, 〈3, 2〉.

k = 2, Thread 1: An assertion is placed on 〈1, 1〉. Testing Thread 1, Thread 2 yields no

assertion violation. Testing Thread 1, Thread 3 yields an assertion violation with cnt31, cnt32

(both count variables appear because of the inherent dependency between the outer loop and

inner loop in nested loops). Updation of graph is done. An assertion is placed on 〈1, 2〉. Testing

Thread 1, Thread 2 yields no assertion violation. Testing Thread 1, Thread 3 gives an assertion

violation with cnt31, cnt32. Updation of graph is done.

www.manaraa.com

52

1: while x ≤ 5 do

2: Do-something

3: x+ +

4: b−−
5: while a ≤ 5 do

6: a+ +

7: y −−
8: end while

9: end while

1: while y ≤ 5 do

2: Do-something

3: y + +

4: c−−
5: while b ≤ 5 do

6: b+ +

7: z −−
8: end while

9: end while

1: while z ≤ 5 do

2: Do-something

3: z + +

4: x−−
5: while c ≤ 5 do

6: c+ +

7: a−−
8: end while

9: end while

(a) Thread 1 (b) Thread 2 (c) Thread 3

Figure 4.5 Case study-5: Nested loops with inter-thread loop dependencies

k = 2, Thread 2: An assertion is placed on 〈2, 1〉. Selecting Thread 1, Thread 2 for testing,

yields an assertion with cnt11, cnt12 in the program trace. Updation of graph is done. Selecting

Thread 2, Thread 3 for testing, yields no assertion violation. An assertion is placed on 〈2, 2〉.

Selecting Thread 1, Thread 2 for testing, yields an assertion with cnt11, cnt12 in the program

trace. Updation of graph is done. Selecting Thread 2, Thread 3 for testing, yields no assertion

violation.

k = 2, Thread 3: An assertion is placed on 〈3, 1〉. Selecting Thread 1, Thread 3 for testing,

yields no assertion violation. Selecting Thread 2, Thread 3 for testing, gives an assertion

violation with cnt21, cnt22 in the program trace. Updation of graph is done. At this point, a

non-termination check reveals a simple cycle between the nodes 〈1, 1〉, 〈2, 1〉, 〈3, 1〉 as indicated

in the dependency graph. Hence, non-termination is reported.

A careful observation reveals, that this is the exact same sequence of computations by

EXPLORE that concluded the likelihood of non-termination in Case study-3. Again, we

attribute this symmetrical behavior to be due to the inherent dependency between the inner

and outer loop in nested loops. It is therefore, not feasible to isolate the cause of the dependency

leading to a count violation.

www.manaraa.com

53

1: while x ≤ 5 do

2: Do-something

3: x+ +

4: if z = 2 then

5: y −−
6: end if

7: end while

1: while y ≤ 5 do

2: Do-something

3: y + +

4: z −−
5: end while

1: while z ≤ 5 do

2: Do-something

3: z + +

4: x−−
5: end while

(a) Thread 1 (b) Thread 2 (c) Thread 3

Figure 4.6 Case study-6: Loops and conditionals with inter-thread loop dependencies

4.3 Loops and conditionals with inter-thread loop dependencies

In this case, non-termination is caused due to scenarios, where inter-thread loop dependen-

cies causing count violations on a 〈i, j〉 occur due to two thread-loop pairs 〈i′, j′〉, 〈i′′, j′′〉. Here,

i′ 6= i′′. Examples include entries 8, 9, 10 in Table.4.1.

4.3.1 Case study-6

Consider the example in Figure.4.6. This corresponds to the entry 8 in Table.4.1. The pro-

gram has three threads, with a circular inter-thread loop dependency between 〈1, 1〉, 〈2, 1〉, 〈3, 1〉.

Here, for 〈2, 1〉 to encounter a count violation, dependencies are required from both 〈1, 1〉, 〈3, 1〉.

k = 2, Thread 1: An assertion violation is placed on 〈1, 1〉. Selecting Thread 1, Thread

2 for testing yields no assertion violation. Selecting Thread 1, Thread 3 for testing, gives an

assertion violation with cnt31 in the program trace. Updation of graph is done.

k = 2, Thread 2: An assertion violation is placed on 〈2, 1〉. Selecting Thread 1, Thread

2 for testing yields no assertion violation. Similarly, selecting Thread 2, Thread 3 for testing,

yields no assertion violation.

k = 2, Thread 3: An assertion violation is placed on 〈3, 1〉. Selecting Thread 1, Thread

3 for testing yields no assertion violation. Selecting Thread 2, Thread 3 for testing gives an

assertion violation with cnt21 in the program trace. Updation of graph is done. Since, no

non-teminating execution sequence was found yet, EXPLORE repeats testing for k = 3.

k = 3: Selecting all the threads, placing an assertion on 〈1, 1〉, gives an assertion violation

with cnt21, cnt31 in the program trace. Updation of graph is done. Selecting all the threads,

www.manaraa.com

54

placing an assertion on 〈2, 1〉, gives an assertion violation with cnt11, cnt31 in the program

trace. Updation of graph is done. A non-term check returns true, due to a complex cycle as

shown in Table.4.1.

4.3.2 Experience with CONCREST

We have incorporated two types of techniques in our framework: con2colic testing tech-

nique as implemented in CONCREST tool (Farzan et al. (2013)) and simple random testing.

As noted in Section.2.3, con2colic testing performs branch condition analysis and inter-thread

interference analysis (race conditions) to systematically explore the possible executions of a

concurrent program. This technique is efficient in verifying properties encoded as assertions.

However, our experience reveals that increase in the number of branch points can result in sig-

nificant overhead in terms of exploring interference scenarios. In particular, consider Figure.4.1.

This program is a simple concurrent program with two threads, each having a loop of size 5.

With CONCREST, our tool took 122s (as compared to 2.3s with random testing)to terminate,

due to exhaustive exploration of an exorbitant number of irrelevant scenarios. Further, with

larger sized loops, or programs with more number of threads, the technique fails to scale.

4.4 Discussion

Our approach successfully detects several different possible scenarios that could cause a

non-terminating behavior in multi-threaded programs. In the presence of a non-terminating

execution sequence, our tool is able to detect the non-termination in a reasonable amount of

time. We observe, that the execution time of our tool is a function of the number of threads

in the program of interest.

Further, the execution time is also dependent on the type of patterns that lead to non-

termination. Patterns involving more conjunctive dependencies typically require more time.

That is, when inter-thread loop dependencies on a thread-loop pair, require more than one

thread-loop pair to cause a count violation, our experiments show, that it takes longer to

discover such scenarios. This is evident from the entries 2, 8 in Table 4.1. Entry 2 shows a

pattern in which, non-termination occurs due to simple inter-thread loop dependencies, a thread-

www.manaraa.com

55

loop pair depends on another single thread-loop pair and hence it takes less time(100.6s). Entry

8 shows a pattern with a conjunctive dependency in which, for non-termination to occur, two

thread-loop pairs affect a thread-loop pair to cause a count violation. Hence, in this case non-

termination detection takes more time than the previous case(119.4s). This is because, testing

to identify scenarios involving such complex dependencies typically requires exploring a larger

number of thread schedules.

Our experiments with nested loops reveal that there may be false positives. This was due to

the inherent dependency between the outer loop and the inner loop in nested loops. Inevitably,

the execution of the outer loop causes the inner loop to be executed too. As a result of this,

when a non-terminating execution sequence occurs due to an inter-thread loop dependency from

the nested loops to a loop in a different thread, it is not possible to distinguish the source of

the count violation.

www.manaraa.com

56

CHAPTER 5. CONCLUSION

5.1 Summary

Testing is primarily used to for verifying assertional properties. However, non-termination

cannot be directly expressed as an assertional property. Also, testing techniques require that

a program terminates, how can we utilize testing techniques, that are more scalable than static

analysis techniques, to detect non-termination in multi-threaded programs? In this thesis, we

have addressed this question. We have presented a novel, testing based technique, that detects

non-termination in multi threaded programs due to unwanted race conditions.

Our technique involves the insertion of carefully selected assertions, violations of which,

indicate inter-thread loop dependencies. We presented a specialized data structure, the de-

pendency graph to encode these dependencies. We developed a reduction of non-termination

in concurrent programs, to detecting cycles in this dependency graph and devised an algo-

rithm for the same. To aid users in developing appropriate countermeasures to the detected

non-termination, we display the scenario leading to the unbounded behavior along with the

dependency graph. We realized our technique in a modular framework. We have validated the

feasibility of our approach by experimental evaluation on systematic enumeration of tailored

sample programs, that exhibit different types of execution scenarios leading to non-termination.

In this thesis, we focused on developing a generic, language agnostic methodology to detect

non-termination instead of providing a solution that is specific to a programming language. By

simply using a testing engine corresponding to the programming language of interest and by

minor modifications to the instrumentation tool, our tool can be adapted to any programming

language. The modularity of our framework, allows our technique to be used in conjunction with

any testing technique. Hence, our technique can be further leveraged by pairing it with testing

www.manaraa.com

57

techniques providing better soundness and completeness guarantees. Lastly, our technique

being testing based, does not require explicit adjustments to consider the non-determinism

introduced by memory models adopted.

5.2 Future Work

5.2.1 Investigation of methods to reduce false positives

Typical real world programs have many nested loops. There exists an inherent dependency

between the parent loop and the child or nested loop, this causes the child loop to be executed

every time the parent loop executes. This could again cause unforeseen inter-thread loop de-

pendencies and count violations causing a false positive. A possible direction for future work,

could be in investigating methods, that could reduce these false positives. For instance, when

a non-termination is reported, testing could be used to recreate the scenario to indicate the

presence of a non-termination, or in other words, whether the scenario causes a divergence in

the program execution.

5.2.2 Improved identification of the scenario leading to non-termination

In the event, that our framework detects a non-terminating execution sequence, our frame-

work reports a scenario, which consists of a sequence of thread - loop pairs along with their

inter-thread loop dependencies, that led to the non-terminating program behavior. We are in-

terested in identifying and reporting a more refined scenario, which is a sequence of program

locations, local variable and global variable valuations that led to the non-terminating program

behavior.

5.2.3 Automated generation of remedies for non-termination

Upon the identification of more refined scenarios leading to non-termination, a possible

avenue for future work could be to facilitate the automatic generation of possible remedies

to weed out the non-termination execution path, without compromising the advantages of

concurrency.

www.manaraa.com

58

5.2.4 Development of guided testing strategies

Our tool currently adopts a naive testing strategy, where the course of testing is the same

irrespective of the discovered dependencies. One avenue for future work could be to develop

strategies that guide testing. That is, the inter-thread loop dependencies observed could be

used to determine the most optimal course of testing.

www.manaraa.com

59

BIBLIOGRAPHY

Atig, M. F., Bouajjani, A., Emmi, M., and Lal, A. (2012a). Detecting fair non-termination in

multithreaded programs. In Computer Aided Verification, pages 210–226.

Atig, M. F., Bouajjani, A., Kumar, K. N., and Saivasan, P. (2012b). Linear-time model-

checking for multithreaded programs under scope-bounding. In International Symposium on

Automated Technology for Verification and Analysis, pages 152–166. Springer.

Bouajjani, A., Emmi, M., and Parlato, G. (2011). On sequentializing concurrent programs. In

International Static Analysis Symposium, pages 129–145. Springer.

Cadar, C. and Sen, K. (2013). Symbolic execution for software testing: three decades later.

Communications of the ACM, 56(2):82–90.

Chen, H.-Y., Cook, B., Fuhs, C., Nimkar, K., and OHearn, P. (2014). Proving nontermination

via safety. In International Conference on Tools and Algorithms for the Construction and

Analysis of Systems, pages 156–171. Springer.

Cook, B., Fuhs, C., Nimkar, K., and O’Hearn, P. (2014). Disproving termination with overap-

proximation. In Formal Methods in Computer-Aided Design (FMCAD), 2014, pages 67–74.

IEEE.

Cook, B., Kroening, D., Rümmer, P., and Wintersteiger, C. M. (2010). Ranking function

synthesis for bit-vector relations. In International Conference on Tools and Algorithms for

the Construction and Analysis of Systems, pages 236–250. Springer.

Cook, B., Podelski, A., and Rybalchenko, A. (2005). Abstraction refinement for termination.

In International Static Analysis Symposium, pages 87–101. Springer.

www.manaraa.com

60

Cook, B., Podelski, A., and Rybalchenko, A. (2006). Termination proofs for systems code. In

27th ACM SIGPLAN Conference on Programming Language Design and Implementation,

volume 41:6, pages 415–426. ACM.

Cook, B., Podelski, A., and Rybalchenko, A. (2007). Proving thread termination. In ACM

SIGPLAN Notices, volume 42:6, pages 320–330. ACM.

Cook, B., See, A., and Zuleger, F. (2013). Ramsey vs. lexicographic termination proving.

In International Conference on Tools and Algorithms for the Construction and Analysis of

Systems, pages 47–61. Springer.

Emmi, M., Qadeer, S., and Rakamarić, Z. (2011). Delay-bounded scheduling. ACM SIGPLAN

Notices, 46(1):411–422.

Farzan, A., Holzer, A., Razavi, N., and Veith, H. (2013). Con2colic testing. In Proceedings of

the 2013 9th Joint Meeting on Foundations of Software Engineering, pages 37–47. ACM.

Godefroid, P., Klarlund, N., and Sen, K. (2005). Dart: directed automated random testing. In

ACM Sigplan Notices, volume 40:6, pages 213–223. ACM.

Gupta, A., Henzinger, T. A., Majumdar, R., Rybalchenko, A., and Xu, R.-G. (2008). Prov-

ing non-termination. 35th annual ACM SIGPLAN-SIGACT symposium on Principles of

programming languages, 43(1):147–158.

Inverso, O., Tomasco, E., Fischer, B., La Torre, S., and Parlato, G. (2014). Bounded model

checking of multi-threaded c programs via lazy sequentialization. In International Conference

on Computer Aided Verification, pages 585–602. Springer.

Jones, C. B. (1981). Development methods for computer programs including a notion of inter-

ference.

Larraz, D., Nimkar, K., Oliveras, A., Rodŕıguez-Carbonell, E., and Rubio, A. (2014). Proving

non-termination using max-smt. In International Conference on Computer Aided Verifica-

tion, pages 779–796. Springer.

www.manaraa.com

61

Morse, J., Cordeiro, L., Nicole, D., and Fischer, B. (2011). Context-bounded model checking

of LTL properties for ANSI-C software. In Software Engineering and Formal Methods, pages

302–317. Springer.

Musuvathi, M. and Qadeer, S. (2008). Fair stateless model checking. In ACM Programming

Language Design and Implementation, volume 43:6, pages 362–371. ACM.

Podelski, A. and Rybalchenko, A. (2004a). A complete method for the synthesis of linear

ranking functions. In International Workshop on Verification, Model Checking, and Abstract

Interpretation, pages 239–251. Springer.

Podelski, A. and Rybalchenko, A. (2004b). Transition invariants. In Logic in Computer Science,

2004. Proceedings of the 19th Annual IEEE Symposium on, pages 32–41. IEEE.

Popeea, C. and Rybalchenko, A. (2012). Compositional termination proofs for multi-threaded

programs. In Tools and Algorithms for the Construction and Analysis of Systems, pages

237–251. Springer.

Qadeer, S. and Rehof, J. (2005). Context-bounded model checking of concurrent software. In

International conference on tools and algorithms for the construction and analysis of systems,

pages 93–107. Springer.

Rodrigues, R. E. (2013). Non-termination attacks based on integer overflows. WTDSOFT

2013, page 86.

Sen, K. and Agha, G. A. (2006a). Concolic testing of multithreaded programs and its application

to testing security protocols.

Sen, K. and Agha, G. A. (2006b). Concolic testing of multithreaded programs and its applica-

tion to testing security protocols.

Sen, K., Marinov, D., and Agha, G. (2005). CUTE: a concolic unit testing engine for C. In

5th joint meeting of the European Software Engineering Conference and ACM SIGSOFT

Symposium on the Foundations of Software Engineering, pages 263–272.

www.manaraa.com

62

Velroyen, H. and Rümmer, P. (2008). Non-termination checking for imperative programs. In

International Conference on Tests and Proofs, pages 154–170. Springer.

	2016
	Testing Non-termination in Multi-threaded programs
	Priyanka Thyagarajan
	Recommended Citation

	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACKNOWLEDGEMENTS
	ABSTRACT
	1. INTRODUCTION
	1.1 Overview of existing approaches for determining non-termination
	1.2 Proposed Solution
	1.3 Contributions
	1.4 Outline

	2. REVIEW OF LITERATURE
	2.1 Non-termination in sequential programs
	2.2 Non-termination in concurrent programs
	2.3 Testing multi-threaded programs
	2.4 Summary

	3. TESTING FOR NON-TERMINATION
	3.1 Preliminaries
	3.2 Dependency Graph
	3.2.1 Constructing dependency graph
	3.2.2 Detecting non-termination

	3.3 Non-termination by testing
	3.3.1 Determining base count
	3.3.2 Testing for non-termination by EXPLORE

	3.4 Tool Description
	3.4.1 Tool overview
	3.4.2 Tool components

	4. RESULTS
	4.1 Loops with inter-thread loop dependencies
	4.1.1 Case study-1
	4.1.2 Case study-2

	4.2 Nested loops with inter-thread loop dependencies
	4.2.1 Case study-3
	4.2.2 Case study-4
	4.2.3 Case study-5

	4.3 Loops and conditionals with inter-thread loop dependencies
	4.3.1 Case study-6
	4.3.2 Experience with CONCREST

	4.4 Discussion

	5. CONCLUSION
	5.1 Summary
	5.2 Future Work
	5.2.1 Investigation of methods to reduce false positives
	5.2.2 Improved identification of the scenario leading to non-termination
	5.2.3 Automated generation of remedies for non-termination
	5.2.4 Development of guided testing strategies

	BIBLIOGRAPHY

